Bump Mapping

What is Bump-Mapping?

Bump-mapping is the process of creating the illusion of 3D depth by using a manipulated surface normal in the lighting, rather than actually creating the extra surface detail.

Displacement-mapped

Bump-mapped

This is a good optimization! Displacement-mapping requires a lot of triangles, bump-mapping doesn’t.

Definition of Height Fields -- Think of the Pin Box!

The Most Straightforward Type of Bump-Mapping is Height Fields
#version 330 compatibility

```cpp
out vec3 vMCposition; out vec3 vECposition; out vec2 vST;

void main ()
{
    vST = gl_MultiTexCoord0.st;
    vMCposition = gl_Vertex .xyz;
    vECposition = ( gl_ModelViewMatrix * gl_Vertex ).xyz;
    gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}
```

```
uniform float uLightX, uLightY, uLightZ;
uniform float uExag;
uniform vec4 uColor;
uniform sampler2D uHgtUnit;
uniform bool uUseColor;
uniform float uLevel1;
uniform float uLevel2;
uniform float uTol;
uniform float uDelta;

in vec3  vMCposition;
in vec3  vECposition;
in vec2 vST;

const  float  DELTA = 0.001;
const vec3 BLUE  = vec3( 0.1, 0.1, 0.5 );
const vec3 GREEN = vec3( 0.0, 0.8, 0.0 );
const vec3 BROWN = vec3( 0.6, 0.3, 0.1 );
const vec3 WHITE = vec3( 1.0, 1.0, 1.0 );
const float LNGMIN  = -579240./2.;  // in meters, same as heights
const float LNGMAX =  579240./2.;
const float LATMIN   = -419949./2.;
const float LATMAX  =  419949./2.;

vec2 stp0 = vec2( DELTA, 0. );
vec2 st0p = vec2( 0. , DELTA );
float west   =  texture2D( uHgtUnit, vST-stp0 ).r;
float east    =  texture2D( uHgtUnit, vST+stp0 ).r;
float south  =  texture2D( uHgtUnit, vST-st0p ).r;
float north  =  texture2D( uHgtUnit, vST+st0p ).r;

vec3 stangent = vec3( 2.*DELTA*(LNGMAX-LNGMIN), 0., uExag * ( east - west ) );
vec3 ttangent = vec3( 0., 2.*DELTA*(LATMAX-LATMIN), uExag * ( north - south ) );
vec3 normal = normalize(  cross( stangent, ttangent )  );
float LightIntensity = dot( normalize( vec3(uLightX,uLightY,uLightZ) – vMCposition ), normal );
if( LightIntensity < 0.1 )
    LightIntensity = 0.1;
if( uUseColor )
{
    float here = texture2D( uHgtUnit, vST ).r;
    vec3 color = BLUE;
    if( here > 0. )
    {
        float t = smoothstep( uLevel1-uTol, uLevel1+uTol, here );
        color = mix( GREEN, BROWN, t );
    }
    if( here > uLevel1+uTol )
    {
        float t = smoothstep( uLevel2-uTol, uLevel2+uTol, here );
        color = mix( BROWN, WHITE, t );
    }
    gl_FragColor = vec4( LightIntensity*color, 1. );
}
else{
    gl_FragColor= vec4( LightIntensity*uColor.rgb, 1. );
}
```

Remember that the cross product of two vectors gives you a vector that is perpendicular to both. So, the cross product of two tangent vectors gives you a good approximation to the surface normal.

It turns out that textures are a great place to "hide" data. They are allowed to be very large and they are fast to lookup values in.

Floating-point texture whose .r components contain the heights (in meters)
Terrain Height Bump-mapping: Coloring by Height

No Exaggeration

Exaggerated

Terrain Height Bump-mapping: Even Zooming-in Looks Good

Several textures are being mixed onto the surface of the globe.
The Second Most Straightforward Type of Bump-Mapping is Height Field Equations

This is the coordinate system we will be using. The plane is X-Y with Z pointing up.

The Second Most Straightforward Type of Bump-Mapping is Height Field Equations

Rock A Dropped

Rock B Dropped

Both Rocks Dropped

You can sum the individual height field equations and get the same result as summing the height field displacements.

The Second Most Straightforward Type of Bump-Mapping is Height Field Equations

Radial-ripple equation with height decay

If we can get the two tangent vectors, then their cross product will give us the surface normal:

\[\text{normal} = \text{xtangent} \times \text{ytangent} \]

\[\text{xtangent} = \text{vec3}(1.0, 0.0, \frac{\partial z}{\partial x}) \]

\[\text{ytangent} = \text{vec3}(0.0, 1.0, \frac{\partial z}{\partial y}) \]

\[\frac{\partial z}{\partial x} = \frac{\partial z}{\partial r} \frac{\partial r}{\partial x} \]

\[\frac{\partial z}{\partial y} = \frac{\partial z}{\partial r} \frac{\partial r}{\partial y} \]

\[\frac{\partial z}{\partial r} = -\sin(2\pi Br + C)(2\pi B)e^{-Dr} + \cos(2\pi Br + C)(-D)e^{-Dr} \]

\[r^2 = x^2 + y^2 \]

(Note: \(\frac{\partial x}{\partial r} \) and \(\frac{\partial y}{\partial r} \) are actually the cosine and sine of the polar angle.)

Combining Bump and Cube Mapping