What is Bump-Mapping?

Bump-mapping is the process of creating the illusion of 3D depth by using a manipulated surface normal in the lighting, rather than actually creating the extra surface detail.

Dispacement-mapped Bump-mapped

The Most Straightforward Type of Bump-Mapping is Height Fields

```
#version 330 compatibility
out vec3 vMCposition;
out vec3 vECposition;
out vec2 vST;

void main()
{
    vST = gl_MultiTexCoord0.st;
    vMCposition = gl_Vertex.xyz;
    vECposition = (gl_ModelViewMatrix * gl_Vertex).xyz;
    gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}
```

```
#version 330 compatibility
uniform float uLightX, uLightY, uLightZ;
uniform float uExag;
uniform vec4 uColor;
uniform sampler2D uHgtUnit;
uniform bool uUseColor;
uniform float uLevel1;
uniform float uLevel2;
uniform float uTol;
uniform float uDelta;
in vec3 vMCposition;
in vec3 vECposition;
in vec2 vST;

const float DELTA = 0.001;
const vec3 BLUE = vec3(0.1, 0.1, 0.5);
const vec3 GREEN = vec3(0.0, 0.8, 0.0);
const vec3 BROWN = vec3(0.6, 0.3, 0.1);
const vec3 WHITE = vec3(1.0, 1.0, 1.0);
const float LNGMIN = -579240./2.; // in meters, same as heights
const float LNGMAX = 579240./2.;
const float LATMIN = -419949./2.;
const float LATMAX = 419949./2.;

void main()
{
    gl_FragColor = uColor;
}
```
void main()
{
vec2 stp0 = vec2(DELTA, 0.);
vec2 st0p = vec2(0., DELTA);
float west = texture2D(uHgtUnit, vST-stp0).r;
float east = texture2D(uHgtUnit, vST+stp0).r;
float south = texture2D(uHgtUnit, vST-st0p).r;
float north = texture2D(uHgtUnit, vST+st0p).r;
vec3 stangent = vec3(2.*DELTA*(LNGMAX-LNGMIN), 0., uExag * (east - west));
vec3 ttangent = vec3(0., 2.*DELTA*(LATMAX-LATMIN), uExag * (north - south));
vec3 normal = normalize(cross(stangent, ttangent));
float LightIntensity = dot(normalize(vec3(uLightX,uLightY,uLightZ) – vMCposition), normal);
if(LightIntensity < 0.1)
LightIntensity = 0.1;
if(uUseColor)
{
float here = texture2D(uHgtUnit, vST).r;
vec3 color = BLUE;
if(here > 0.)
{
float t = smoothstep(uLevel1-uTol, uLevel1+uTol, here);
color = mix(GREEN, BROWN, t);
}
if(here > uLevel1+uTol)
{
float t = smoothstep(uLevel2-uTol, uLevel2+uTol, here);
color = mix(BROWN, WHITE, t);
}
else
{
pl_FragColor= vec4(LightIntensity*color, 1.);
}
else
{
pl_FragColor= vec4(LightIntensity*uColor.rgb, 1.);
}
}
The Second Most Straightforward Type of Bump-Mapping is Height Field Equations

Rock Dropped

This is the coordinate system we will be using. The plane is X-Y with Z pointing up.

Rock A Dropped Rock B Dropped Both Rocks Dropped

The Second Most Straightforward Type of Bump-Mapping is Height Field Equations

$z = A \cos(2\pi Br + C)e^{-Dr}$

Radial-ripple equation with height decay

$\text{tangent} = \text{vec}(1., 0., \frac{\partial z}{\partial x})$ $\text{ytangent} = \text{vec}(0., 1., \frac{\partial z}{\partial y})$

$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r}$

$x^2 + y^2 = r^2$ $\frac{\partial r}{\partial x} = \frac{x}{r}$ $\frac{\partial r}{\partial y} = \frac{y}{r}$

You can sum the individual height field equations and get a result similar to that of summing the height field displacements.

Combining Bump and Cube Mapping