Dome Projection using a Vertex Shader

Oregon State University
Mike Bailey
mjb@cs.oregonstate.edu

Dome Projection – Becoming more Common

It’s only a matter of time until it becomes a routine visualization tool

Programming a Dome display is easier when only a single projector is used

A fisheye lens distorts the image so that it spreads out across the dome. The trick is pre-distorting the image in the other direction so that it looks correct after being projected

Dome Distortion

Move the teapot so it surrounds the audience
Dome Projection:

Viewing Volume = (-1,-1) to (1,1)

The edge of the circle represents the edge of the dome projection = your left, right, bottom, top as you are sitting in the theater.

Dome Vertex Shader:

const float PI = 3.14159265;
void main()
{
 vec4 pos = gl_ModelViewMatrix * gl_Vertex;
 float lenxy = length(pos.xy);
 float phi = atan(lenxy , -pos.z);
 pos.xy = (phi / (PI/2.)) * (pos.xy / lenxy);
 gl_Position = gl_ProjectionMatrix * pos;
}

God's-eye View: As the eye sees it:

From the side:

Note: (pos.xy / lenxy) = (cosΘ,sinΘ)

Cartesian: Dome:

Dome:
Large Lines and Polygons Need to be Tessellated

Note: This edge does not pass through the flow vectors!

Bounding Box edges were not tessellated. Straight lines on the monitor produced curved lines on the dome.

Note: This edge does pass through the flow vectors!

Bounding Box edges were tessellated. Curves lines on the monitor produced straight lines on the dome.