Homogeneous Coordinates

Mike Bailey
mjb@cs.oregonstate.edu

Oregon State University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Homogeneous Coordinates:
Adding a 4th Value to an XYZ Triple

We usually think of a 3D point as being represented by a triple: (x,y,z).
Using homogeneous coordinates, we add a 4th number: (x,y,z,w)
A graphics system, by convention, performs transformations and clipping using (x,y,z,w) and then divides x, y, and z by w before it uses them.

\[
X = \frac{x}{w}, \quad Y = \frac{y}{w}, \quad Z = \frac{z}{w}
\]

Thus (1,2,3,1), (2,4,6,2), (-1,-2,-3,-1) all represent the same 3D point.
One reason is that it allows for perspective division within the matrix mechanism. The OpenGL call
\texttt{glFrustum(left, right, bottom, top, near, far)} creates this matrix:

\[
\begin{bmatrix}
\frac{2 \cdot \text{near}}{\text{right} - \text{left}} & 0 & \frac{\text{right} + \text{left}}{\text{right} - \text{left}} & 0 \\
0 & \frac{2 \cdot \text{near}}{\text{top} - \text{bottom}} & \frac{\text{top} + \text{bottom}}{\text{top} - \text{bottom}} & 0 \\
0 & 0 & -\frac{(\text{far} + \text{near})}{\text{far} - \text{near}} & -\frac{2 \cdot \text{far} \cdot \text{near}}{\text{far} - \text{near}} \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

This gives \(w' = -z \), which is the necessary divisor for perspective.
Another Reason is to be able to Represent Points at Infinity

This is useful to be able specify a parallel light source by placing the light source location at infinity.

The point $(1,2,3,1)$ represents the 3D point $(1,2,3)$

The point $(1,2,3,.5)$ represents the 3D point $(2,4,6)$

The point $(1,2,3,.01)$ represents the point $(100,200,300)$

So, $(1,2,3,0)$ represents a point at infinity, but along the ray from the origin through $(1,2,3)$

Points-at-infinity are used for parallel light sources and some shadow algorithms
However, When Using Homogeneous Coordinates, You Sometimes Just Need to be able to get a Vector Between Two Points

To get a vector between two homogeneous points, we subtract them:

\[
(x_b, y_b, z_b, w_b) - (x_a, y_a, z_a, w_a) = \frac{(x_b, y_b, z_b)}{w_b} - \frac{(x_a, y_a, z_a)}{w_a}
\]

\[
= \frac{(w_a x_b, w_a y_b, w_a z_b) - (w_b x_a, w_b y_a, w_b z_a)}{w_a w_b}
\]

Fortunately, most of the time that we do this, we only want a unit vector in that direction, not the full vector. So, we can ignore the denominator, and just say:

\[
\hat{v} = \text{normalize}(w_a x_b - w_b x_a, w_a y_b - w_b y_a, w_a z_b - w_b z_a);
\]

```c
vec3 VectorBetween( vec4 a, vec4 b )
{
    return normalize( vec3( a.w*b.x - b.w*a.x, a.w*b.y - b.w*a.y, a.w*b.z - b.w*a.z ) );
}
```