Zooming and Panning Around a Complex 2D Display

- Standard (Euclidean) geometry zooming forces much of the information off the screen
- This eliminates the context from the zoomed-in display
- This problem can be solved with hyperbolic methods if we are willing to give up Euclidean geometry
- At one time, this would have also meant severely giving up graphics performance, but not now
Zooming in Euclidean Space

123,101 line strips
446,585 points

Zooming in Polar Hyperbolic Space
Overall theme: something divided by something a little bigger

\[
\begin{align*}
\lim_{K \to 0} R' &= 1 \\
\lim_{K \to \infty} R' &= 0 \\
R' &= \frac{R}{R + K} \\
X' &= R' \cos \Theta' = \frac{R \cos \Theta}{R + K} \\
Y' &= R' \sin \Theta' = \frac{R \sin \Theta}{R + K}
\end{align*}
\]

Coordinates moved to outer edge when \(K = 0 \)

Coordinates moved to center when \(K = \infty \)

\[
\begin{align*}
R &= \sqrt{X^2 + Y^2} \\
\Theta &= \tan^{-1}\left(\frac{Y}{X}\right) \\
R' &= \frac{R}{R + K} \\
X' &= R' \cos \Theta = \frac{R \cos \Theta}{R + K} \\
Y' &= R' \sin \Theta = \frac{R \sin \Theta}{R + K}
\end{align*}
\]
Cartesian Hyperbolic Equations

\[
X' = \frac{X}{K + K}
\]

Coordinates moved to outer edge when \(K = 0 \)

Coordinates moved to center when \(K = \infty \)

\[
Y' = \frac{Y}{K + K}
\]

Zooming in Cartesian Hyperbolic Space
#version 330 compatibility
uniform bool uPolar;
uniform float uK;
uniform float uTransX;
uniform float uTransY;
out vec3 vColor;

void main(void)
{
 vColor = aColor.rgb;
 vec2 pos = (uModelViewMatrix * aVertex).xy;
 pos += vec2(uTransX, uTransY);
 float r = length(pos.xyz);
 vec4 pos2 = vec4(0., 0., -5., 1.);
 if(uPolar)
 pos2.xy = pos / (r + uK);
 else
 pos2.xy = pos / (pos*pos + uK*uK);
 gl_Position = uProjectionMatrix * pos2;
}

#version 330 compatibility
in vec3 vColor;
on vec4 fFragColor;

void main()
{
 fFragColor = vec4(vColor, 1.);
}