Using Vertex Shaders for Hyperbolic Geometry

Mike Bailey
mjb@cs.oregonstate.edu

Zooming and Panning Around a Complex 2D Display

- Standard (Euclidean) geometry zooming forces much of the information off the screen
- This eliminates the context from the zoomed-in display
- This problem can be solved with hyperbolic methods if we are willing to give up Euclidean geometry
- At one time, this would have also meant severely giving up graphics performance, but not now

Zooming in Euclidean Space

- 123,101 line strips
- 446,585 points

Zooming in Polar Hyperbolic Space

Overall theme: something divided by something a little bigger

\[
\begin{align*}
R' &= R / (R+K) \\
\lim_{K \to 0} R' &= 1 \\
\lim_{K \to \infty} R' &= 0 \\
X' &= R' \cos \Theta' \\
Y' &= R' \sin \Theta'
\end{align*}
\]

Coordinates moved to outer edge when \(K = 0 \)
Coordinates moved to center when \(K = \infty \)

\[
\begin{align*}
R &= \sqrt{X^2 + Y^2} \\
\Theta &= \tan^{-1} \left(\frac{Y}{X} \right) \\
R' &= \frac{R}{R+K} \\
X' &= \frac{R' \cos \Theta}{R+K} = \frac{X}{R+K} \\
Y' &= \frac{R' \sin \Theta}{R+K} = \frac{Y}{R+K}
\end{align*}
\]
Cartesian Hyperbolic Equations

\[
\begin{align*}
Polar: & \quad X' = X + \frac{X}{R}, \\
 & \quad Y' = Y + \frac{Y}{R}.
\end{align*}
\]

\[
\begin{align*}
Cartesian: & \quad X' = X + \frac{X}{\sqrt{1 + \frac{Y^2}{K^2}}}, \\
 & \quad Y' = Y + \frac{Y}{\sqrt{1 + \frac{X^2}{K^2}}}.
\end{align*}
\]

Coordinates moved to outer edge when \(K = 0\)
Coordinates moved to center when \(K = \infty\)

Zooming in Cartesian Hyperbolic Space

```
#version 330 compatibility
uniform bool uPolar;
uniform float uK;
uniform float uTransX;
uniform float uTransY;
out vec3 vColor;

void
main( void )
{
  vColor = gl_Color.rgb;
  vec2 pos = ( gl_ModelViewMatrix * gl_Vertex ).xy;
  pos += vec2( uTransX, uTransY );
  float r = length( pos.xyz );
  vec4 pos2 = vec4( 0., 0., -5., 1. );
  if( uPolar )
    pos2.xy = pos / ( r + uK );
  else
    pos2.xy = pos / ( pos*pos + uK*uK );
  gl_Position = gl_ProjectionMatrix * pos2;
}
```

```
#version 330 compatibility
in vec3    vColor;
void
main(  )
{
  gl_FragColor = vec4( vColor, 1. );
}
```

Corvallis Streets, Buildings, Parks

![Kelley Engineering Center](image)

Kelley Engineering Center

![Corvallis Streets, Buildings, Parks](image)