Using Fragment Shaders to Manipulate Images

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

image.pptx mjb — February 23, 2024

The Basic Idea: Wrap an Image Around a Piece of Geometry

In software, this is a very slow process. In hardware, this is very fast.
The development of texture-mapping hardware was one of the most
significant events in the history of computer graphics. This is really
what finally enabled game development on a realistic scale.

Oregon State
University
Computer Graphics
mjb — February 23, 2024

The Basic Ideas

To prevent confusion, the texture image pixels are not called pixels. A pixel is an
RGB dot in the final screen image. An RGB dot in the texture image is called a
texture element, or texel.

Similarly, to avoid terminology confusion, a texture image’s width and height
dimensions are not called X and Y. They are called S and T.

A texture image is not indexed by its actual resolution coordinates. Instead, it is
indexed by a coordinate system that is resolution-independent. The left side is
always S=0., the right side is $S=1., the bottom is T=0., and the top is T=1.

Thus, you do not need to be aware of the texture’s resolution when you are

specifying coordinates that point into it. Think of S and T as a measure of what
fraction of the way you are into the texture. T=1.

S=1.

Oregon State
University
Computer Graphics

=0. mijb — February 23, 2024

The Basic Ideas

Texture mapping is a computer graphics operation in which a separate image,
referred to as the texture, is stretched onto a piece of 3D geometry and
follows it however it is transformed. This image is also known as a texture
map. This can be any image. It can also be data. Afterall, the contents of
a texture are just numbers.

T=1.

Oregon State
University
Computer Graphics
mjb — February 23, 2024

The Basic Ideas o

The mapping between the geometry of the 3D object and the S and T of
the texture image works like this:

(X2, Y2, 22, S2,T2)
. ! =l- I

(X3,Y3, Z3, S3,T3 y (X1,Y1, 21, $1,T1) A"
¢]
S=0. H
R =1
ezt
(X4’ Y4’ 24’ S4!T4) ~ ’i% /

Interpolated (S,T) = (.78, .67) (X0 Y0, 20, S0,T0)

(199.68, 171.52)

(.78, .67)in Sand T = (199.68, 171.52) in texels ‘ &

You specify an (s,t) pair at each vertex, along with the vertex coordinate. At the same
time that OpenGL is interpolating the coordinates, colors, etc. inside the polygon, it is
s also interpolating the (s,t) coordinates. Then, when OpenGL goes to draw each pixel,
it uses that pixel’s interpolated (s,t) to lookup a color in the texture image.

Oregon State
University
Computer Graphics

mjb — February 23, 2024

Using a Texture: Assigning an (s,t) to each vertex 6

Enable texture mapping:
glEnable(GL_TEXTURE_2D);

Draw your polygons, specifying s and t at each vertex:

glBegin(GL_TRIANGLES);
glTexCoord2f(s0, t0);
gINormal3f(nx0, ny0, nz0);
glVertex3f(x0, y0, z0);

glTexCoord2f(s1, t1);

glNormal3f(nx1, ny1, nz1);

glVertex3f(x1, y1, z1);
glEnd();

(If this geometry is static, i.e., will never change, it is a good
idea to put this all into a display list.)

Disable texture mapping:
Pmveity 9IDisable(GL_TEXTURE_2D);
Computer Graphics o Febroan 25,2004

Texture Image Basics in Shaders

Index the image using the usual
texture indexing t=1.

(0.5s,t< 1)

When you get back an RGB from the
texture, remember that, if the
texture’s numbers are colors:

(0.sr,g,b=s1)

If the texture contains data, then the
numbers can be anything.

ResT

Also, if you need to know the texel
resolution of this texture, do this:

ivec?2 ires = textureSize(uilmageUnit, 0); t=0.
float ResS = float(ires.s);
float ResT = float(ires.t);

A
v

Thus, to get from the current texel’s (s,t) to a
neighboring texel’s (s,t), add

=+ (1./ResS , 1./ResT)

mjb — February 23, 2024

8
A Good Example of Manipulating RGB Numbers — the Image Negative

Image RGB values are just numbers — they can be manipulated any way you’d like!

(1.-R,1.-G, 1.-B)

Oregon State
University
Computer Graphics
mjb — February 23, 2024

Image Negative 9

.glib file

##OpenGL GLIB
Perspective 70

LookAt 0.0.6. 0.0.0. 0.1.0.

texture 5 image.bmp

Vertex neg.vert
Fragment neg.frag
Program Neg TexUnit 5

QuadXY .2 5.

Oregon State
University
Computer Graphics

mjb — February 23, 2024

Image Negative 10

Vertex shader

#version 330 compatibility \

out vec2 vST;

If you are using a Mac:
» Leave out the #version line
» Use varying instead of out/in

void
main()

{
vST = gl_MultiTexCoord0.st;

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

Oregon State
University
Computer Graphics

mjb — February 23, 2024

Image Negative 11

Fragment shader

#version 330 compatibility \
uTexUnit;

uniform sampler2D If you are using a Mac:
invec2 <« vST; » Leave out the #version line
» Use varying instead of out/in

void / Use the texture2D() function instead
main()
{

vec3 rgb = texture(uTexUnit, vST).rgb;
gl_FragColor= vec4(1.-rgb.r, 1.-rgb.g, 1.-rgb.b, 1.);

}

Could also have said:

gl_FragColor= vec4(vec3(1.,1.,1.) -rgb ,1.);

Oregon State
University
Computer Graphics

mjb — February 23, 2024

Image Distortion 12
Fragment shader

uniform float uS0, uTO;

uniform float uPower;

uniform sampler2D uTexUnit;

in vec2 vST;

void

main()

{
vec2 delta = vST - vec2(uS0,uTO0);
vec2 st = vec2(uS0,uT0) + sign(delta) * pow(abs(delta), uPower);
vec3 rgb = texture(uTexUnit, st).rgb;
gl_FragColor= vec4(rgb, 1.);

mjb — February 23, 2024

Image Un-masking: 13

Interpolation can still happen whent<0.ort> 1.

Q=[A-1t)Qy +tQ,

t=-1. e
More dino, negative sphere mix(Qo,Q1,t)

=TT

i

All dino, no sphere

t=2.

University More sphere, negative dino
Computer Graphics

Oregon State

mjb — February 23, 2024

14

Image Un-Masking:
Abusing the Linear Blending Equation for a Good Purpose

More of | t=2.
what |
do want 9
Blend of what | have
What | have t=% and,less of what |
to start with >@ don’t want
Blend of what | have
and what | don’t want
What | =0
don’t want e | | ‘
® | —
0.0 1.0 2.0

lout = (1 - t)*ldontwant + t*lin

Oregon State Q=1-1t)Qy +t0;

University RGByy = mix(RGBaontwane » RGBin , t)

Computer Graphics
mjb — February 23, 2024

15
Brightness

Idontwant - VeC3(0-, 0., 0-);

t=2.
Oregon State Q : (1 _ t)QO + th
Comg?llt‘éerrs(l}%phics RGBoue = mlx(RGBdontWClnt ,RGB;p , t)

mjb — February 23, 2024

16
Contrast

Idontwant - VeC3(0-5, 0-5, 0.5);

Q=(1—-1t)Q + 1t
Oregon State

University RGB oyt = mix(RGBgontwant » RGBin , t)

Computer Graphics
mjb — February 23, 2024

17
HDTV Luminance Standard

Luminance = 0.2125*Red + 0.7154*Green + 0.0721*Blue

Oregon State
University
Computer Graphics
mjb — February 23, 2024

Saturation

18

ldontwant = vec3(luminance, luminance, luminance);

Oregon State
University
Computer Graphics

Q=0-1t)Q+tQ,
RGByy = mix(RGBgontwant » RGBiy , t)

mjb — February 23, 2024

19
Difference

ldontwant = lbefore

lin = laster

Oregon State Q=(1-1t)Q +1t0;
Ur%iversity RGBout = mix(RGBdontwant , RGBin , t)
Computer Graphics

mjb — February 23, 2024

Oregon State
University
Computer Graphics

ChromaKey

Replace the fragment if:

R<t
G<t
B>1.-

20

mjb — February 23, 2024

Blue/Green Screen Usage is ChromaKey 21

Loyal Studios

University

Computer Graphics https://www.youtube.com/watch?v=T4pi1F25sxg

mjb — February 23, 2024

22
Blur

Blur Convolution:

3x3 5x5
1 2 4 2 1
L2 r |2 4 8 4 2
B=—1|2 4 2 B=—4 8 16 8 4
16.{1 5 1 100., 4 g 4 2
1 2 4 2 1

Oregon State
University
Computer Graphics
mjb — February 23, 2024

Sharpening

23

Blur Convolution:

Oregon State
University
Computer Graphics

Using the 3x3 Blur Convolution:

1 2 1
B=—-|2 4 2
1 2 1

ldontwant = lblur

Q=0-1t)Qp +t0;
RGByy,: = mix(RGBdontwant yRGBy , t)

mjb — February 23, 2024

Sharpening 24

vec2 stp0 = vec2(1./ResS, 0.);

vec2 stOp =vec2(0. 1./ResT);
vec2 stpp = vec2(1./ResS, 1./ResT);
vec2 stpm = vec2(1./ResS, -1./ResT);

vec3 i00 = texture(ulmageUnit, vST).rgb;

vec3 im1m1 = texture(ulmageUnit, vST-stpp).rgb;
vec3 ip1p1 = texture(ulmageUnit, vST+stpp).rgb;
vec3d im1p1 =texture(ulmageUnit, vST-stpm).rgb;
vec3 ip1m1 = texture(ulmageUnit, vST+stpm).rgb;

vecd im10 = texture(ulmageUnit, vST-stpO0).rgb;
vecd ip10 = texture(ulmageUnit, vST+stp0).rgb;
vec3 i0Om1 = texture(ulmageUnit, vST-stOp).rgb;
vecd iOp1 = texture(ulmageUnit, vST+st0p).rgb;

vec3 blur = vec3(0.,0.,0.);
blur += 1.*(imMTm1+ip1m1+ip1p1+im1p1);
blur += 2.*(im10+ip10+i0m1+i0p1);
blur += 4.%*(i00);
blur /= 16.;
Ore
cOmIf;u gl_FragColor = vec4(mix(blur, irgb, t), 1.);

ary 23, 2024

25

Sharpening

Oregon State
University
Computer Graphics t=2.

mjb — February 23, 2024

Embossing 20

vec2 stp0 = vec2(1./ResS, 0.);

vec2 stpp = vec2(1./ResS, 1./ResT);

vec3 c00 =texture(ulmageUnit, vST).rgb;
vec3 cp1p1 = texture(ulmageUnit, vST + stpp).rgb;

vec3 diffs = c00 - cp1p1;
float max = diffs.r;
if(abs(diffs.g) > abs(max))

max = diffs.qg;
if(abs(diffs.b) > abs(max))
max = diffs.b;

float gray = clamp(max +.5,0.,1.);

vec4 grayVersion = vec4(gray, gray, gray, 1.);
vec4 colorVersion = vec4(gray*c00, 1.);
gl_FragColor= mix(grayVersion, colorVersion, t);

Oregon State
University
Computer Graphics

mijb — February 23, 2024

27
Edge Detection

Horizontal and Vertical Sobel Convolutions:

1 -2 -1 -1 0 1
H=|0 0 0 V=-2 0 2
1 2 1 -1 0 1

SZ\/H2+V2 ®=atan2(V, H)

Oregon State
University
Computer Graphics
mjb — February 23, 2024

Co

Edge Detection

28

const vec3 LUMCOEFFS = vec3(0.2125,0.7154,0.0721);

vec2 stp0 = vec2(1./ResS, 0.);

vec2 stOp =vec2(0. , 1./ResT);

vec2 stpp = vec2(1./ResS, 1./ResT);

vec2 stpm = vec2(1./ResS, -1./ResT);

float i00 = dot(texture(ulmageUnit, vST).rgb , LUMCOEFFS);

float im1m1 = dot(texture(ulmageUnit, vST-stpp).rgb, LUMCOEFFS);
float ip1p1 = dot(texture(ulmageUnit, vST+stpp).rgb, LUMCOEFFS);
float im1p1 = dot(texture(ulmageUnit, vST-stpm).rgb, LUMCOEFFS);
float ip1m1 = dot(texture(uilmageUnit, vST+stpm).rgb, LUMCOEFFS);

float im10 = dot(texture(ulmageUnit, vST-stp0).rgb, LUMCOEFFS);
float ip10 = dot(texture(ulmageUnit, vST+stp0).rgb, LUMCOEFFS);
float i0Om1 = dot(texture(ulmageUnit, vST-stOp).rgb, LUMCOEFFS);
float i0p1 = dot(texture(ulmageUnit, vST+st0p).rgb, LUMCOEFFS);

float h = -1.*im1p1 - 2.*i0p1 - 1.*ip1p1 + 1.*im1m1 + 2.*iI0m1 + 1.*ip1m1;
float v = -1.*im1m1 - 2.*im10 - 1.*im1p1 + 1.*ip1m1 + 2.%ip10 + 1.*ip1p1;
float mag = sqgrt(h*h + v*v);

vec3 target = vec3(mag,mag,mag);
color = vec4(mix(irgb, target, t), 1.);

puter Urapnics

mjb — February 23, 2024

29
Edge Detection

Oregon State
University
Computer Graphics

mjb — February 23, 2024

30
Toon Rendering

Hand-drawn cartoons have a unique style,
typically characterized by:

1. Dark outlines between the important
elements in the scene

2. Areduced collection of available colors
(i.e., no smooth shading)

http://drawdoo.com/draw/draw-winnie-the-pooh/

Oregon State
University

Computer Graphics
mjb — February 23, 2024

31
Toon Rendering

float mag = sqrt(h*h + v*v);
if(mag > uMagTol)
{
gl_FragColor=vec4(0.,0.,0.,1.);
}
else
{
rgb.rgb *= uQuantize; /| scale up
rgb.rgb +=vec3(.5, .5,.5); /l round
ivec3 irgb = ivec3(rgb.rgb); Il cast to all integers
rgb.rgb = vec3(irgb); Il cast back to floats
rgb /= uQuantize; I/ scale down
gl_FragColor=vec4(rgb, 1.);
}
Quantizing example using the number 3.14159:
uQuantize Result
10. 3.1
100. 3.14
1000. 3.141

Oregon St§ . .
Ufiversit These are just examples — uQuantize does not need to be a power of 10!

Computer Glapmnics

mjb — February 23, 2024

32
Toon Rendering

Original
Image

Colors
Quantized

Outlines Added

Oregon State
University
Computer Graphics
mjb — February 23, 2024

Toon Rendering for Non-Photorealistic Effects 33

V) Using shaders to enhance
scientific, engineering, and
architectural illustration

A YR . ——

Oregon State
University
Computer Graphics

m)b — February 723, 2024

Toon Rendering for Non-Photorealistic Effects

34

¢ ﬂ_"/,/\

Using shaders to enhance
scientific, engineering, and
architectural illustration

Oregon State
University
Computer Graphics

Photo by Steve Cunningham [@

Toon Rendering for Non-Photorealistic Effects 35

Oregon State
University
Computer Graphics

How fast does it
converge, if ever?

Oregon State
University
Computer Graphics

Mandelbrot Set

2
Zin = Z: T Z,

36

Oregon State

University
Computer Graphics
mjb — February 23, 2024

38

Julia Set

How fast does it
converge, if ever?

Oregon State
University
Computer Graphics

mjb — February 23, 2024

39

Oregon State
University
Computer Graphics

mjb — February 23, 2024

Doing the Mandelbrot Math in Single vs. Double Precision 40

32 bit smgle preC|S|on floating point

Oregon State 64- b|t double preC|S|on floatlng point
University

Computer Graphics
mib — February 23, 2024

41
We Can Do Image Processing on Dynamic Scenes

with a Two-pass Approach

Lighting
Shader
Pass #1 l

« Y4—> Rendera3D | Texture
dynamic scene

v Pass #2
—> Render a quadrilateral > Framebuffer
Sharpen
Image Shader
Oregon State
University

Computer Graphics
mjb — February 23, 2024

o 42
Original

Sharpened

Oregon State
University
Computer Graphics

mJb — February 23, 2024

43

Original Sharpened

University
Computer Graphics

mjb — February 23, 2024

