
mjb – February 23, 2024

1

Computer Graphics

Using Fragment Shaders to Manipulate Images

image.pptx

Mike Bailey

mjb@cs.oregonstate.edu

mjb – February 23, 2024

2

Computer Graphics

+ =

The Basic Idea: Wrap an Image Around a Piece of Geometry

In software, this is a very slow process. In hardware, this is very fast.
The development of texture-mapping hardware was one of the most
significant events in the history of computer graphics. This is really
what finally enabled game development on a realistic scale.

mjb – February 23, 2024

3

Computer Graphics

The Basic Ideas

To prevent confusion, the texture image pixels are not called pixels. A pixel is an
RGB dot in the final screen image. An RGB dot in the texture image is called a
texture element, or texel.

Similarly, to avoid terminology confusion, a texture image’s width and height
dimensions are not called X and Y. They are called S and T.

A texture image is not indexed by its actual resolution coordinates. Instead, it is
indexed by a coordinate system that is resolution-independent. The left side is
always S=0., the right side is S=1., the bottom is T=0., and the top is T=1.

Thus, you do not need to be aware of the texture’s resolution when you are
specifying coordinates that point into it. Think of S and T as a measure of what
fraction of the way you are into the texture.

mjb – February 23, 2024

4

Computer Graphics

The Basic Ideas

Texture mapping is a computer graphics operation in which a separate image,
referred to as the texture, is stretched onto a piece of 3D geometry and
follows it however it is transformed. This image is also known as a texture
map. This can be any image. It can also be data. Afterall, the contents of
a texture are just numbers.

mjb – February 23, 2024

5

Computer Graphics

The Basic Ideas

The mapping between the geometry of the 3D object and the S and T of
the texture image works like this:

T=1.

S=0.

T=0.

S=1.

(X0, Y0, Z0, S0,T0)

(X1, Y1, Z1, S1,T1)(X3, Y3, Z3, S3,T3)

(X4, Y4, Z4, S4,T4)

(X2, Y2, Z2, S2,T2)

Interpolated (S,T) = (.78, .67)

(.78, .67) in S and T = (199.68, 171.52) in texels (199.68, 171.52)

172

171

199 200

You specify an (s,t) pair at each vertex, along with the vertex coordinate. At the same
time that OpenGL is interpolating the coordinates, colors, etc. inside the polygon, it is
also interpolating the (s,t) coordinates. Then, when OpenGL goes to draw each pixel,
it uses that pixel’s interpolated (s,t) to lookup a color in the texture image.

mjb – February 23, 2024

6

Computer Graphics

Enable texture mapping:
glEnable(GL_TEXTURE_2D);

Draw your polygons, specifying s and t at each vertex:

glBegin(GL_TRIANGLES);
glTexCoord2f(s0, t0);
glNormal3f(nx0, ny0, nz0);
glVertex3f(x0, y0, z0);

glTexCoord2f(s1, t1);

glNormal3f(nx1, ny1, nz1);
glVertex3f(x1, y1, z1);

. . .
glEnd();

(If this geometry is static, i.e., will never change, it is a good
idea to put this all into a display list.)

Disable texture mapping:
glDisable(GL_TEXTURE_2D);

Using a Texture: Assigning an (s,t) to each vertex

mjb – February 23, 2024

7

Computer Graphics

Texture Image Basics in Shaders

ResS

R
es

T

Index the image using the usual
texture indexing

(0. ≤ s, t ≤ 1.)

When you get back an RGB from the
texture, remember that, if the
texture’s numbers are colors:

(0. ≤ r, g, b ≤ 1.)

If the texture contains data, then the
numbers can be anything.

Also, if you need to know the texel
resolution of this texture, do this:

Thus, to get from the current texel’s (s,t) to a
neighboring texel’s (s,t), add

± (1./ResS , 1./ResT)

ivec2 ires = textureSize(uImageUnit, 0);
float ResS = float(ires.s);
float ResT = float(ires.t);

s =
 1

.s
=

 0
.

t = 1.

t = 0.

mjb – February 23, 2024

8

Computer Graphics

A Good Example of Manipulating RGB Numbers – the Image Negative

(R, G, B) (1.-R, 1.-G, 1.-B)

Image RGB values are just numbers – they can be manipulated any way you’d like!

mjb – February 23, 2024

9

Computer Graphics

Image Negative

##OpenGL GLIB
Perspective 70

LookAt 0. 0. 6. 0. 0. 0. 0. 1. 0.

texture 5 image.bmp

Vertex neg.vert
Fragment neg.frag
Program Neg TexUnit 5

QuadXY .2 5.

.glib file

mjb – February 23, 2024

10

Computer Graphics

Image Negative

#version 330 compatibility

out vec2 vST;

void
main()
{

vST = gl_MultiTexCoord0.st;
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

Vertex shader

If you are using a Mac:
• Leave out the #version line
• Use varying instead of out/in

mjb – February 23, 2024

11

Computer Graphics

Image Negative

#version 330 compatibility
uniform sampler2D uTexUnit;
in vec2 vST;

void
main()
{

vec3 rgb = texture(uTexUnit, vST).rgb;
gl_FragColor= vec4(1.-rgb.r, 1.-rgb.g, 1.-rgb.b, 1.);

}

Fragment shader

gl_FragColor= vec4(vec3(1.,1.,1.) - rgb , 1.);

Could also have said:

If you are using a Mac:
• Leave out the #version line
• Use varying instead of out/in
• Use the texture2D() function instead

mjb – February 23, 2024

12

Computer Graphics

Image Distortion

uniform float uS0, uT0;
uniform float uPower;
uniform sampler2D uTexUnit;
in vec2 vST;

void
main()
{

vec2 delta = vST - vec2(uS0,uT0);
vec2 st = vec2(uS0,uT0) + sign(delta) * pow(abs(delta), uPower);
vec3 rgb = texture(uTexUnit, st).rgb;
gl_FragColor= vec4(rgb, 1.);

}

Fragment shader

mjb – February 23, 2024

13

Computer Graphics

Image Un-masking:
Interpolation can still happen when t < 0. or t > 1.

t = -1.
More dino, negative sphere

t = 0.
All dino, no sphere

t = 2.
More sphere, negative dino

t = 1.
All sphere, no dino

mjb – February 23, 2024

14

Computer Graphics

Image Un-Masking:
Abusing the Linear Blending Equation for a Good Purpose

t
What I

don’t want

More of
what I

do want

What I have
to start with

0.0 1.0 2.0

Iout = (1 - t)*Idontwant + t*Iin

Blend of what I have
and what I don’t want

Blend of what I have
and less of what I
don’t want

଴ ଵ

௢௨௧ ௗ௢௡௧௪௔௡௧ ௜௡

t = 0.

t = 1.

t = 2.

mjb – February 23, 2024

15

Computer Graphics

Brightness

Idontwant = vec3(0., 0., 0.);

t = 0. t = 1. t = 2.

଴ ଵ

௢௨௧ ௗ௢௡௧௪௔௡௧ ௜௡

mjb – February 23, 2024

16

Computer Graphics

Contrast

Idontwant = vec3(0.5, 0.5, 0.5);

t = 0. t = 1. t = 2.

଴ ଵ

௢௨௧ ௗ௢௡௧௪௔௡௧ ௜௡

mjb – February 23, 2024

17

Computer Graphics

HDTV Luminance Standard

Luminance = 0.2125*Red + 0.7154*Green + 0.0721*Blue

mjb – February 23, 2024

18

Computer Graphics

Idontwant = vec3(luminance, luminance, luminance);

Saturation

t = 0. t = 1. t = 3.

଴ ଵ

௢௨௧ ௗ௢௡௧௪௔௡௧ ௜௡

mjb – February 23, 2024

19

Computer Graphics

଴ ଵ

௢௨௧ ௗ௢௡௧௪௔௡௧ ௜௡

Difference

Idontwant = Ibefore

Iin = Iafter

t = 0. t = 2.t = 1.

mjb – February 23, 2024

20

Computer Graphics

ChromaKey

Replace the fragment if:

R < t

G < t

B > 1.-t

t = 0. t = 0.5 t = 1.

mjb – February 23, 2024

21

Computer Graphics

Loyal Studios
https://www.youtube.com/watch?v=Ldh6FKavxek

Blue/Green Screen Usage is ChromaKey

https://www.youtube.com/watch?v=T4pi1F25sxg

mjb – February 23, 2024

22

Computer Graphics

Blur Convolution:

Blur

3x3 5x5

mjb – February 23, 2024

23

Computer Graphics

Blur Convolution:

Sharpening


















121

242

121

.16

.1
B

Idontwant = Iblur

଴ ଵ

௢௨௧ ௗ௢௡௧௪௔௡௧ ௜௡

Using the 3x3 Blur Convolution:

mjb – February 23, 2024

24

Computer Graphics

Sharpening

vec2 stp0 = vec2(1./ResS, 0.);
vec2 st0p = vec2(0. , 1./ResT);
vec2 stpp = vec2(1./ResS, 1./ResT);
vec2 stpm = vec2(1./ResS, -1./ResT);

vec3 i00 = texture(uImageUnit, vST).rgb;
vec3 im1m1 = texture(uImageUnit, vST-stpp).rgb;
vec3 ip1p1 = texture(uImageUnit, vST+stpp).rgb;
vec3 im1p1 = texture(uImageUnit, vST-stpm).rgb;
vec3 ip1m1 = texture(uImageUnit, vST+stpm).rgb;
vec3 im10 = texture(uImageUnit, vST-stp0).rgb;
vec3 ip10 = texture(uImageUnit, vST+stp0).rgb;
vec3 i0m1 = texture(uImageUnit, vST-st0p).rgb;
vec3 i0p1 = texture(uImageUnit, vST+st0p).rgb;

vec3 blur = vec3(0.,0.,0.);
blur += 1.*(im1m1+ip1m1+ip1p1+im1p1);
blur += 2.*(im10+ip10+i0m1+i0p1);
blur += 4.*(i00);
blur /= 16.;

gl_FragColor = vec4(mix(blur, irgb, t), 1.);

mjb – February 23, 2024

25

Computer Graphics

Sharpening

t = 0.

t = 1.

t = 2.

mjb – February 23, 2024

26

Computer Graphics

Embossing

vec2 stp0 = vec2(1./ResS, 0.);
vec2 stpp = vec2(1./ResS, 1./ResT);
vec3 c00 = texture(uImageUnit, vST).rgb;
vec3 cp1p1 = texture(uImageUnit, vST + stpp).rgb;

vec3 diffs = c00 - cp1p1;
float max = diffs.r;
if(abs(diffs.g) > abs(max))

max = diffs.g;
if(abs(diffs.b) > abs(max))

max = diffs.b;

float gray = clamp(max + .5, 0., 1.);
vec4 grayVersion = vec4(gray, gray, gray, 1.);
vec4 colorVersion = vec4(gray*c00, 1.);
gl_FragColor= mix(grayVersion, colorVersion, t);

mjb – February 23, 2024

27

Computer Graphics

Horizontal and Vertical Sobel Convolutions:

Edge Detection















 


121

000

121

H





















101

202

101

V

VHS
22  Θ = atan2(V, H)

mjb – February 23, 2024

28

Computer Graphics

Edge Detection

const vec3 LUMCOEFFS = vec3(0.2125,0.7154,0.0721);
. . .
vec2 stp0 = vec2(1./ResS, 0.);
vec2 st0p = vec2(0. , 1./ResT);
vec2 stpp = vec2(1./ResS, 1./ResT);
vec2 stpm = vec2(1./ResS, -1./ResT);
float i00 = dot(texture(uImageUnit, vST).rgb , LUMCOEFFS);
float im1m1 = dot(texture(uImageUnit, vST-stpp).rgb, LUMCOEFFS);
float ip1p1 = dot(texture(uImageUnit, vST+stpp).rgb, LUMCOEFFS);
float im1p1 = dot(texture(uImageUnit, vST-stpm).rgb, LUMCOEFFS);
float ip1m1 = dot(texture(uImageUnit, vST+stpm).rgb, LUMCOEFFS);
float im10 = dot(texture(uImageUnit, vST-stp0).rgb, LUMCOEFFS);
float ip10 = dot(texture(uImageUnit, vST+stp0).rgb, LUMCOEFFS);
float i0m1 = dot(texture(uImageUnit, vST-st0p).rgb, LUMCOEFFS);
float i0p1 = dot(texture(uImageUnit, vST+st0p).rgb, LUMCOEFFS);

float h = -1.*im1p1 - 2.*i0p1 - 1.*ip1p1 + 1.*im1m1 + 2.*i0m1 + 1.*ip1m1;
float v = -1.*im1m1 - 2.*im10 - 1.*im1p1 + 1.*ip1m1 + 2.*ip10 + 1.*ip1p1;
float mag = sqrt(h*h + v*v);

vec3 target = vec3(mag,mag,mag);
color = vec4(mix(irgb, target, t), 1.);

mjb – February 23, 2024

29

Computer Graphics

Edge Detection

t = 0. t = 0.5 t = 1.

mjb – February 23, 2024

30

Computer Graphics

Toon Rendering

http://drawdoo.com/draw/draw-winnie-the-pooh/

Hand-drawn cartoons have a unique style,
typically characterized by:

1. Dark outlines between the important
elements in the scene

2. A reduced collection of available colors
(i.e., no smooth shading)

mjb – February 23, 2024

31

Computer Graphics

float mag = sqrt(h*h + v*v);
if(mag > uMagTol)
{

gl_FragColor= vec4(0., 0., 0., 1.);
}
else
{

rgb.rgb *= uQuantize; // scale up
rgb.rgb += vec3(.5, .5, .5); // round
ivec3 irgb = ivec3(rgb.rgb); // cast to all integers
rgb.rgb = vec3(irgb); // cast back to floats
rgb /= uQuantize; // scale down
gl_FragColor= vec4(rgb, 1.);

}

Toon Rendering

Quantizing example using the number 3.14159:

uQuantize Result
10. 3.1

100. 3.14
1000. 3.141
These are just examples – uQuantize does not need to be a power of 10!

mjb – February 23, 2024

32

Computer Graphics

Toon Rendering
Original
Image

Colors
Quantized

Outlines Added

mjb – February 23, 2024

33

Computer Graphics

Using shaders to enhance
scientific, engineering, and

architectural illustration

Toon Rendering for Non-Photorealistic Effects

mjb – February 23, 2024

34

Computer Graphics

Toon Rendering for Non-Photorealistic Effects

Photo by Steve Cunningham

Using shaders to enhance
scientific, engineering, and

architectural illustration

mjb – February 23, 2024

35

Computer Graphics

Toon Rendering for Non-Photorealistic Effects

mjb – February 23, 2024

36

Computer Graphics

Mandelbrot Set

zzz ii 0

2

1




How fast does it
converge, if ever?

mjb – February 23, 2024

37

Computer Graphics

mjb – February 23, 2024

38

Computer Graphics

Julia Set

czz ii




2

1

How fast does it
converge, if ever?

mjb – February 23, 2024

39

Computer Graphics

mjb – February 23, 2024

40

Computer Graphics

Doing the Mandelbrot Math in Single vs. Double Precision

32-bit single precision floating point

64-bit double precision floating point

mjb – February 23, 2024

41

Computer Graphics

We Can Do Image Processing on Dynamic Scenes
with a Two-pass Approach

Pass #1

Pass #2

Render a 3D
dynamic scene

Texture

Render a quadrilateral Framebuffer

Lighting
Shader

Sharpen
Image Shader

mjb – February 23, 2024

42

Computer Graphics

Original

Sharpened

mjb – February 23, 2024

43

Computer Graphics

Original Sharpened

