Creating More Realistic Lens Effects

Mike Bailey
mjb@cs.oregonstate.edu
Oregon State University

Convex Lens Definitions

Eye
Center₂

Center₁

R₁ (>0)
R₂ (>0)

- Z
out vec3 vRefractVector;
uniform float uR1, uR2;
const float ETA = 0.66;
const vec3 EYE = vec3(0., 0., 0.);
.
vec3 P = vec3(gl_ModelViewMatrix * gl_Vertex);
vec3 FromEyeToPt = normalize(P - EYE); // vector from eye to pt
vec3 Center1 = vec3(0., 0., P.z - uR1);
vec3 Normal1;
if(uR1 >= 0.)
 Normal1 = normalize(P - Center1);
else
 Normal1 = normalize(Center1 - P);
vec3 v1 = refract(FromEyeToPt, Normal1, ETA); // eta = in/out
vec3 Center2 = vec3(0., 0., P.z + uR2);
vec3 Normal2;
if(uR2 >= 0.)
 Normal2 = normalize(Center2 - P);
else
 Normal2 = normalize(P - Center2);
RefractVector = refract(v1, Normal2, 1./ETA); // 1./eta = out/in
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
Convex Lenses (R1>0, R2>0)
Concave Lenses ($R_1 < 0, R_2 < 0$)