Mixing

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Getting a Mixing Parameter

// create a value of 0. or 1. from the value of x wrt edge:

float t = step(float edge, float x);

// create a value in the range 0. to 1. from the value of x wrt edge0 and edge1:

float t = smoothstep(float edge0, float edge1, float x);
Using that Mixing Parameter to Blend Two Quantities

// use the returned value from step() or smoothstep() to blend value0 to value1:

\[T \ out = \ mix(T \ value0, T \ value1, float \ t); \]

where \(T \) can be just about any type: float, vec2, vec3, vec4, ...

\[out = (1.-t) * \ value_0 + t * \ value_1 \]

One would expect \(0 \leq t \leq 1 \).
but that doesn’t have to be true. After all, these are just numbers.

For a fun exercise with this, go back and change the morphing slider to go beyond 0.-1.

As we will see later, there are really good uses for going beyond the range 0.-1.
in float vX, vY;
in vec3 vColor;
in float vLightIntensity;

uniform float uA;
uniform float uP;
uniform float uTol;

const vec3 WHITE = vec3(1., 1., 1.);

void
main()
{
 float f = fract(uA*vX);

 float t = smoothstep(0.5-uP-uTol, 0.5-uP+uTol, f) - smoothstep(0.5+uP-uTol, 0.5+uP+uTol, f);
 vec3 rgb = vLightIntensity * mix(WHITE, vColor, t);
 gl_FragColor = vec3(rgb, 1.);
}
Moral: There are many ways to turn [0. - 1.] into [0. - 1.]
Sidebar: Why Do These Two Curves Match So Closely?

The Taylor Series expansion of \(y = \sin^2 \left(\frac{\pi}{2} x \right) \) around \(x=0.5 \) is:

\[
y = \left(\frac{1}{2} - \frac{\pi}{4} + \frac{\pi^3}{96} \right) + x \left(\frac{\pi}{2} - \frac{\pi^3}{16} \right) + x^2 \left(\frac{\pi^3}{8} \right) - x^3 \left(\frac{\pi^3}{12} \right)
\]

\[
= .038 - .37x + 3.88x^2 - 2.58x^3
\]

which is pretty close to: \(y = 3x^2 - 2x^3 \)
Cubic vs. Quintic

\[y = 10x^3 - 15x^4 + 6x^5 \]

\[y = 3x^2 - 2x^3 \]

Both go from 0. to 1.
Both have initial and final slopes of 0.
The quintic has initial and final curvatures of 0.