// create a value of 0 or 1. from the value of x wrt edge:

float t = step(float edge, float x);

// create a value in the range 0. to 1. from the value of x wrt edge0 and edge1:

float t = smoothstep(float edge0, float edge1, float x);
One would expect $0 \leq t \leq 1$, but that doesn't have to be true. After all, these are just numbers.

For a fun exercise with this, go back and change the morphing slider to go beyond 0.-1.

As we will see later, there are really good uses for going beyond the range 0.-1.

Using that Mixing Parameter to Blend Two Quantities

// use the returned value from step() or smoothstep() to blend $value_0$ to $value_1$:

$$Tout = mix(Tvalue_0, Tvalue_1, float t);$$

where T can be just about any type: float, vec2, vec3, vec4, ...

$$out = (1.-t) * value_0 + t * value_1$$

“SmoothPulse” in a Fragment Shader

```glsl
in float vX, vY;
in vec3 vColor;
in float vLightIntensity;
uniform float uA;
uniform float uP;
uniform float uTol;
const vec3 WHITE = vec3( 1., 1., 1. );

void main( )
{
    float f = fract( uA*vX );
    float t = smoothstep( 0.5-uP-uTol, 0.5-uP+uTol, f )  - smoothstep( 0.5+uP-uTol, 0.5+uP+uTol, f );
    vec3 rgb = vLightIntensity * mix( WHITE, vColor, t );
    gl_FragColor = vec3( rgb, 1. );
}
```
Fun With One

Moral: There are many ways to turn \([0.0 - 1.0]\) into \([0.0 - 1.0]\).

Sidebar: Why Do These Two Curves Match So Closely?

The Taylor Series expansion of \(y = \sin\left(\frac{\pi}{2}x\right)\) around \(x=0.5\) is:

\[
y = \left(\frac{1}{2} \cdot \frac{\pi}{2} \cdot \frac{\pi}{4}\right) + x \left(\frac{\pi}{2} \cdot \frac{\pi}{16}\right) + x^2 \left(\frac{\pi}{8} \cdot \frac{\pi}{12}\right) - x^3 \left(\frac{\pi}{12}\right)
\]

= 0.038 - 0.37x + 3.88x^2 - 2.58x^3

which is pretty close to: \(y = 3x^2 - 2x^3\)
Both go from 0. to 1.
Both have initial and final slopes of 0.
The quintic has initial and final curvatures of 0.

\[y = 3x^5 - 2x^3 \]

\[y = 10x^3 - 15x^4 + 6x^5 \]