Noise!

Positional Noise

Idea: Pick a random number at the whole-number input values and then fit a piecewise smooth curve through those points.

The problem is that, due to the uncertainty of random numbers, you might get a good plus-or-minus distribution, or a not-so-good distribution.

Gradient Noise

Idea: Place points at the mid-line at the whole-number input values and use random numbers to pick gradients (slopes) there, and then fit a piecewise smooth curve through those points with those slopes.

No matter what, you will get a good plus-or-minus distribution.

Noise:

• Can be 1D, 2D, or 3D
• Is a function of input value(s)
• Ranges from -1. to +1. or from 0. to 1.
• Might look random, but really isn’t
• Has continuity
• Is repeatable (i.e., if you supply the same inputs, you will always get the same outputs)
Quintic (5th order) Interpolation Creates More Continuity Than Cubic

Cubic: C^1 continuity at the whole-number values
Quintic: C^2 continuity at the whole-number values

Coefficients for Cubic and Quintic Forms

\[N(t) = C_{N0}N^2 + C_{N1}N^3 + C_{G0}G^2 + C_{G1}G^3 + C_{C0}C^2 + C_{C1}C^3 + G(t) \]

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Cubic</th>
<th>Quintic</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{N0}</td>
<td>$1 - 3t^2 + 2t^3$</td>
<td>$1 - 10t^3 + 15t^4 - 6t^5$</td>
</tr>
<tr>
<td>C_{N1}</td>
<td>$3t^2 - 2t^3 = 1 - C_{N0}$</td>
<td>$10t^3 - 15t^4 + 6t^5 = 1 - C_{N0}$</td>
</tr>
<tr>
<td>C_{G0}</td>
<td>$t - 2t^2 + t^3$</td>
<td>$t - 6t^3 + 8t^4 - 3t^5$</td>
</tr>
<tr>
<td>C_{G1}</td>
<td>$-t^2 + t^3$</td>
<td>$-4t^3 + 7t^4 - 3t^5$</td>
</tr>
<tr>
<td>C_{C0}</td>
<td>0</td>
<td>$C_{C0} = \frac{1}{2}t^2 - \frac{3}{2} + \frac{3}{2}t^4 - \frac{1}{2}t^5$</td>
</tr>
<tr>
<td>C_{C1}</td>
<td>0</td>
<td>$C_{C1} = \frac{1}{2}t^3 - \frac{1}{2}t^4 + \frac{1}{2}$</td>
</tr>
</tbody>
</table>

Noise Octaves

Idea: Add multiple noise waves, each one twice the frequency and half the amplitude of the previous one

Image Representation of 2D Noise

1 Octave
4 Octaves
3D Surface Representation of 2D Noise

4 Octaves

3D Volume Rendering of 3D Noise

1 Octave

Has continuity in X, Y, and Z

Volume Isosurfaces of 3D Noise

1 Octave

S* = Mid-value

4 Octaves

The low half of the noise values are on one side of the surface, the high half are on the other side.

Examples

Deciding when to Discard for Erosion

Color Blending for Marble

Color Blending for Clouds

Deciding when to Discard for Erosion
Idea: Take the absolute value of the noise about the centerline, giving the noise a "sharper" appearance and creating "creases". *Warning: this is not the same as fluid "turbulence".*

Warning: this is not the same as fluid "turbulence".

How to Use Noise

Have actual input values of where we are right now

Add Noise to the actual input values to produce new "fake" input values

Use those new "fake" input values in the original equation

Idea: The graphics system will display "here", using display parameters as if you were "over there.

How much to amplify the noise effect

Coordinates where you are now

Now add the noise value, N, to the actual location. Compute the effect at that new location, but apply it at the actual location.

Should PP be in Model or World coordinates? Why?
\[N = \text{NoiseMag} \times \text{noise(NoiseFreq \times PP)}; \]

- **Surface Shader Only**

- **Displacement Shader Only**

- **Surface and Displacement Shaders together**
What's the Difference Between These Two Images? Why?

- Displacement-mapped
- Bump-mapped