Noise!

Noise:

- Can be 1D, 2D, or 3D
- Is a function of input value(s)
- Ranges from -1 to +1, or from 0 to 1.
- Might look random, but really isn’t
- Has continuity
- Is repeatable (i.e., if you supply the same inputs, you will always get the same outputs)

Positional Noise

Idea: Pick a random number at the whole-number input values and then fit a piecewise smooth curve through those points.

The problem is that, due to the uncertainty of random numbers, you might get a good plus-or-minus distribution, or a not-so-good distribution.

Gradient Noise

Idea: Place points at the mid-line at the whole-number input values use random numbers to pick gradients (slopes) there, and then fit a piecewise smooth curve through those points with those slopes.

No matter what, you will get a good plus-or-minus distribution.

Quintic (5th order) Interpolation Creates More Continuity Than Cubic

Cubic: C₁ continuity at the whole-number values
Quintic: C₂ continuity at the whole-number values

Formula for Cubic Interpolation:
\[N(t) = C_0 + C_1 t + C_2 t^2 + C_3 t^3 \]

Formula for Quintic Interpolation:
\[N(t) = C_0 + C_1 t + C_2 t^2 + C_3 t^3 + C_4 t^4 + C_5 t^5 \]

Coefficients for Cubic and Quintic Forms

<table>
<thead>
<tr>
<th>Cubic</th>
<th>Quintic</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C_{00} = 1 - 3t^2 + 2t^3]</td>
<td>[C_{00} = 1 - 10t^3 + 15t^4 - 6t^5]</td>
</tr>
<tr>
<td>[C_{01} = 3t^2 - 2t^3 = 1 - C_{00}]</td>
<td>[C_{01} = 10t^4 - 15t^5 + 6t^6 = 1 - C_{00}]</td>
</tr>
<tr>
<td>[C_{02} = t - 2t^3 + t^4]</td>
<td>[C_{02} = t - 6t^4 + 8t^5 - 3t^6]</td>
</tr>
<tr>
<td>[C_{03} = -t^2 + t^3]</td>
<td>[C_{03} = -4t^5 + 7t^6 - 3t^7]</td>
</tr>
<tr>
<td>[C_{04} = 0]</td>
<td>[C_{04} = \frac{1}{2}]</td>
</tr>
<tr>
<td>[C_{05} = 0]</td>
<td>[C_{05} = \frac{1}{2}]</td>
</tr>
</tbody>
</table>
Noise Octaves

Idea: Add multiple noise waves, each one twice the frequency and half the amplitude of the previous one.

1 Octave 4 Octaves

Image Representation of 2D Noise

1 Octave 4 Octaves

3D Surface Representation of 2D Noise

3D Volume Rendering of 3D Noise

Has continuity in X, Y, and Z.

3D Volume Isosurfaces of 3D Noise

The low half of the noise values are on one side of the surface, the high half are on the other side.

Examples

1. Deciding when to Discard for Erosion
2. Color Blending for Clouds
3. Color Blending for Marble
4. Deciding when to Discard for Erosion
Turbulence

Idea: Take the absolute value of the noise about the centerline, giving the noise a "sharper" appearance and creating "crease". Warning: this is not the same as fluid "turbulence".

How to Use Noise

Have an equation that relates some input value (x, y, z or u, v) to output values (color, height)

Have actual input values of where we are right now

Add Noise to the actual input values to produce new "fake" input values

Use those new "fake" input values in the original equation

Idea: The graphics system will display "here", using display parameters as if you were "over there.

N = NoiseMag * noise(NoiseFreq * PP);

Should PP be in Model or World coordinates? Why?

Surface Shader Only
Computer Graphics

Displacement Shader Only

Surface and Displacement Shaders together

Displacement-mapped

Bump-mapped

What's the Difference Between These Two Images? Why?