
1

mjb – December 26, 2016

1

Oregon State University
Computer Graphics

The Transition from RenderMan to
the OpenGL Shading Language (GLSL)

Mike Bailey

mjb@cs.oregonstate.edu

Oregon State University

prman_to_glsl.pptx

This work is licensed under a Creative
Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License

mjb – December 26, 2016

2

Oregon State University
Computer Graphics

All Six RenderMan Shader Types

1. Displacement

2. Distortion / transformation

3. Surface

4. Lighting

5. Atmospheric / volumetric

6. Imaging

≈ GLSL Vertex Shader

≈ GLSL Fragment Shader

RenderMan Built-in Microfaceting ≈ Manual or GLSL Tessellation

2

mjb – December 26, 2016

3

Oregon State University
Computer Graphics

Topic RenderMan GLSL

Goals 1. Image quality, 2. Speed 1. Speed, 2. Image quality

Shader Types Surface, Displacement (+4 others)
Vertex, Fragment, Geometry,
Tessellation, Compute

Surface Preprocessing Microfacets None [± Tessellation shaders]

Recompute Normals CalculateNormal None

Getting Rid of Pixels Oi = 0.; discard;

Surface/Fragment shader sets R, G, B, αr, αg, αb R, G, B, A [,Z]

Shader Variables Uniform, Varying Attribute, Uniform, Out, In

Coordinate Systems Shader (Object), World Model (=OC), Eye (≈WC)

Noise Built-in Somewhat built-in or use a Texture

Compile Shaders Must do yourself Driver does it for you

Compiler messages Cryptic Cryptic

Fundamental Differences Between
RenderMan Shaders and OpenGL Shaders

mjb – December 26, 2016

4

Oregon State University
Computer Graphics

GLSL Variable Types

Attribute Assigned per-vertex and passed into the
vertex shader, usually with the intent to interpolate
through the rasterizer.

Uniform “Global” values, assigned and left alone for a group of
primitives. Read-only accessible from all of your
shaders. (Cannot be written from a shader.)

Out / In Passed from one shader stage to the next shader stage.

3

mjb – December 26, 2016

5

Oregon State University
Computer Graphics

GLSL Shaders Are Like C With Extensions for Graphics:

• Types include int, ivec2, ivec3, ivec4

• Types include float, vec2, vec3, vec4

• Types include mat2, mat3, mat4

• Types include bool, bvec2, bvec3, bvec4

• Types include sampler to access textures

• Vector components are accessed with [index], .rgba, .xyzw, or.stpq

• Can ask for parallel SIMD operations (doesn’t necessarily do it in hardware):
vec4 a, b, c;
a = b + c;

• Vector components can be “swizzled” (c1.rgba = c2.abgr)

• Type qualifiers: const, attribute, uniform, varying, in, out

• Variables can have “layout qualifiers” (more on this later)

• The discard operator is used in fragment shaders to get rid of the current fragment

mjb – December 26, 2016

6

Oregon State University
Computer Graphics

The discard Operator

if(alpha == 0.)
discard;

4

mjb – December 26, 2016

7

Oregon State University
Computer Graphics

GLSL Shaders Are Missing Some C-isms:

• No type casts (use constructors instead)

• Only some automatic promotion (don’t rely on it)

• No pointers

• No strings

• No enums

• Can only use 1-D arrays (no bounds checking)

Warning: integer division is still integer division !

float f = 2 / 4; // still gives 0.

mjb – December 26, 2016

8

Oregon State University
Computer Graphics

The Shaders’ View of the Basic
Computer Graphics Pipeline

= Fixed Function

= Programmable

• In general, you want to have a
vertex and fragment shader as a
minimum.

• A missing stage is OK. The output
from one stage becomes the input
of the next stage that is there.

• The last stage before the fragment
shader feeds its output variables
into the rasterizer. The interpolated
values then go to the fragment
shaders

5

mjb – December 26, 2016

9

Oregon State University
Computer Graphics

GLSL Vertex Shader Inputs and Outputs

= Must Fill!

Standard OpenGL per-vertex
Attribute variables:

gl_Vertex
gl_Normal,
gl_Color,
etc.

Built-in Uniform Variables:
gl_ModelViewMatrix, etc.

User-defined per-vertex in (Attribute) variables:
aVertex, aColor, aTemperature, etc.

User-defined Uniform Variables:
uThreshhold, etc.

User-defined out (Varying):
vST, vMCpos, vTemperature, etc.

Special:
gl_Position,
gl_PointSize,
etc.

mjb – December 26, 2016

10

Oregon State University
Computer Graphics

A GLSL Vertex Shader Replaces These Operations:

• Vertex transformations

• Normal transformations

• Normal normalization (unitization)

• Handling of per-vertex lighting

• Handling of texture coordinates

A GLSL Vertex Shader Does Not Replace These Operations:

• View volume clipping

• Homogeneous division (divide by w)

• Viewport mapping

• Backface culling

• Polygon mode

• Polygon offset

6

mjb – December 26, 2016

11

Oregon State University
Computer Graphics

Built-in Vertex Shader Variables You Will Use a Lot:

vec4 gl_Vertex

vec3 gl_Normal

vec4 gl_Color

vec4 gl_MultiTexCoordi (i=0, 1, 2, …)

mat4 gl_ModelViewMatrix

mat4 gl_ProjectionMatrix

mat4 gl_ModelViewProjectionMatrix

mat4 gl_NormalMatrix (this is the transpose of the inverse of the MV matrix)

vec4 gl_Position

mjb – December 26, 2016

12

Oregon State University
Computer Graphics

GLSL Fragment Shader Inputs and Outputs

= Must Fill!

Built-in Uniform Variables:
gl_ModelViewMatrix, etc.

User-defined Uniform Variables:
uThreshhold, etc.

Special out variables:
gl_FragColor,
gl_FragDepth,
etc.

Special in:
gl_FragCoord, etc.

User-defined in (Varying):
vST, vMCpos, vTemperature, etc.

7

mjb – December 26, 2016

13

Oregon State University
Computer Graphics

A GLSL Fragment Shader Replaces These Operations:

• Color computation

• Texturing

• Color arithmetic

• Handling of per-pixel lighting

• Fog

• Blending

• Discarding fragments

A GLSL Fragment Shader Does Not Replace These Operations:

• Stencil test

• Z-buffer test

• Stippling

mjb – December 26, 2016

14

Oregon State University
Computer Graphics

Built-in Fragment Shader Variables You Will Use a Lot:

vec4 gl_FragColor

8

mjb – December 26, 2016

15

Oregon State University
Computer Graphics

GLSL Deprecation – Transitioning from Built-in Variables

Variables like gl_Vertex and gl_ModelViewMatrix have been built-in to the GLSL language.

However, starting with Desktop OpenGL 3.0, they have been deprecated in favor of you
defining your own variables and passing them in from the application yourself. The built-ins
still work, but be prepared for them to maybe go away some day. Also, OpenGL-ES has
already completely eliminated the built-ins.

What to do?

I now pretend that we have created variables in an application and have passed them in. So,
lines of code would be changed to look like:

vec4 ModelCoords = gl_Vertex ;

vec4 EyeCoords = gl_ModelViewMatrix * gl_Vertex ;

vec4 ClipCoords = gl_ModelViewProjectionMatrix * gl_Vertex ;

vec3 TransfNorm = gl_NormalMatrix * gl_Normal ;

vec4 ModelCoords = aVertex ;

vec3 TransfNorm = uNormalMatrix * aNormal ;

vec4 EyeCoords = uModelViewMatrix * aVertex ;

vec4 ClipCoords = uModelViewProjectionMatrix * aVertex ;

vec4 ModelCoords = gl_Vertex ;

vec4 EyeCoords = gl_ModelViewMatrix * gl_Vertex ;

vec4 ClipCoords = gl_ModelViewProjectionMatrix * gl_Vertex ;

vec3 TransfNorm = gl_NormalMatrix * gl_Normal ; Why do some of the variables
begin with ‘a’?
Why do some begin with ‘u’?

mjb – December 26, 2016

16

Oregon State University
Computer Graphics

My Own Variable Naming Convention

Beginning
letter(s)

Means that the variable …

a Is a per-vertex attribute from the application

u Is a uniform variable from the application

v Came from the vertex shader

tc Came from the tessellation control shader

te Came from the tessellation evaluation shader

g Came from the geometry shader

f Came from the fragment shader

This isn’t part of “official” OpenGL – it is my way of handling the confusion

With 7 different places GLSL variables can be written from, I decided to adopt a
naming convention to help recognize what variables came from what sources:

9

mjb – December 26, 2016

17

Oregon State University
Computer Graphics

// uniform variables:

#define uModelViewMatrix gl_ModelViewMatrix
#define uProjectionMatrix gl_ProjectionMatrix
#define uModelViewProjectionMatrix gl_ModelViewProjectionMatrix
#define uNormalMatrix gl_NormalMatrix
#define uModelViewMatrixInverse gl_ModelViewMatrixInverse

// attribute variables:

#define aColor gl_Color
#define aNormal gl_Normal
#define aVertex gl_Vertex
#define aTexCoord0 gl_MultiTexCoord0
#define aTexCoord1 gl_MultiTexCoord1
#define aTexCoord2 gl_MultiTexCoord2
#define aTexCoord3 gl_MultiTexCoord3
#define aTexCoord4 gl_MultiTexCoord4
#define aTexCoord5 gl_MultiTexCoord5
#define aTexCoord6 gl_MultiTexCoord6
#define aTexCoord7 gl_MultiTexCoord7

Handling the Transition Now

This isn’t part of “official” OpenGL – it is my way of handling the transition

This is how I equivalence the new names to the deprecated (but still working) ones:

File gstap.h

mjb – December 26, 2016

18

Oregon State University
Computer Graphics

One Additional Warning: There will be times that the
Shader Compiler will appear to have gone insane

A uniform variable that exists, but is not actually needed by the shaders, gets
eliminated by the shader compiler and appears, to the main program, to
be non-existent. You will then get an error when you try to set it from the
glib file, even though you are positive it exists !

BTW, a uniform variable that never gets set will not generate any sort of error – it will
just quietly screw up with an undefined value in your shaders.

uniform vec4 LightPos;
void
main()
{

gl_FragColor = vec4(0., 0., 1., 1.);
// LightPos never affects a pixel

}

Program Bad LightPos [0. 0. 10. 1.]

Glib file:

Frag file:

Message:

