Spectral Effects:
Chromatic Refraction and Wavelength Interference

Mike Bailey
mjb@cs.oregonstate.edu
Oregon State University

Rainbows

Certain processes result in a different light color being seen in a different place.

Rainbow Strategy

1. Draw one big quadrilateral across the scene.
2. Anywhere that \(0.740 \leq \cos(\theta) \leq 0.770 \), paint a color.
3. Otherwise, discard.

Or anything else, really. You just need a large “fragment-generator.”

Spectral Colors

Floats:
- float min, float max, float tol, float t;
- float a = min - tol;
- float b = min + tol;
- float c = max - tol;
- float d = max + tol;

return smoothstep(a,b,t) - smoothstep(c,d,t);

vec3 SunDirection = vec3(0., SunY, 10.);
vec3 PtToSun = normalize(SunDirection);
vec3 PtToEye = normalize(vec3(0.,0.,0.) - ECposition);
float costheta = dot(PtToEye, PtToSun);
float R = Pulse(0.7400, 0.7490, Tol, costheta);
float G = Pulse(0.7490, 0.7605, Tol, costheta);
float B = Pulse(0.7605, 0.7700, Tol, costheta);

vec3 RGB = vec3(R, G, B);
vec3 YC = vec3(0.0, 1.0, 0.0);
vec3 RBG = vec3(1.0, 1.0, 0.0);
vec3 RGB = Rainbow(t);

vec3 sunposition = vec3(0., SunY, 10.);
vec3 PtToSun = normalize(sunposition);
vec3 PtToEye = normalize(vec3(0.,0.,0.) - ECposition);
float costheta = dot(PtToEye, PtToSun);
float R = Pulse(0.66, 0.66, Tol, costheta);
float G = Pulse(0.66, 0.66, Tol, costheta);
float B = Pulse(0.66, 0.66, Tol, costheta);
vec3 RGB = vec3(R, G, B);
vec3 YC = vec3(0.0, 1.0, 0.0);
vec3 RBG = vec3(1.0, 1.0, 0.0);
vec3 RGB = Rainbow(t);

vec3 RGB = vec3(R, G, B);
vec3 YC = vec3(0.0, 1.0, 0.0);
vec3 RBG = vec3(1.0, 1.0, 0.0);
vec3 RGB = Rainbow(t);

vec3 sunposition = vec3(0., SunY, 10.);
vec3 PtToSun = normalize(sunposition);
vec3 PtToEye = normalize(vec3(0.,0.,0.) - ECposition);
float costheta = dot(PtToEye, PtToSun);
float R = Pulse(0.66, 0.66, Tol, costheta);
float G = Pulse(0.66, 0.66, Tol, costheta);
float B = Pulse(0.66, 0.66, Tol, costheta);
vec3 RGB = vec3(R, G, B);
vec3 YC = vec3(0.0, 1.0, 0.0);
vec3 RBG = vec3(1.0, 1.0, 0.0);
vec3 RGB = Rainbow(t);
Oil Slicks

- No phase change when $d = \frac{\lambda}{\eta}$
- Reinforces when $2d = \frac{\lambda}{\eta}$ (m/2)

$$\lambda_1 = 450, 525, 600$$

λ - RBG
η - Y
C - 1.0

Phase Change

On the way in, A travels $d\cos(\phi_i)$ less than B. On the way out, A travels $d\cos(\phi_r)$ more than B.

So, wavelengths reinforce when $\text{abs} [d\cos(\phi_i) - d\cos(\phi_r)]$ is a multiple of the wavelength = λ_1

$$\lambda_1 = d \times |\cos(\phi_i) - \cos(\phi_r)| \div m$$

For a CD, $d = 1600$ nm
For a DVD, $d = 740$ nm

Diffraction Gratings

Call the unit vector from the point to the light ToLight.
Call the unit vector from the point to the eye ToEye.
Call the transformed tangential unit vector Tangent.

Then, $\cos(\phi_i)$ is $\text{ToLight} \cdot \text{Tangent}$
And, $\cos(\phi_r)$ is $\text{ToEye} \cdot (-\text{Tangent})$

So that $\cos(\phi_i) - \cos(\phi_r)$ is: $\text{Tangent} \cdot (\text{ToLight} + \text{ToEye})$