
mjb – May 25, 2017

Oregon State University
Computer Graphics

1

OpenGL Compute Shaders

Mike Bailey
mjb@cs.oregonstate.edu

Oregon State University

compute.shader..575pptx

mjb – May 25, 2017

Oregon State University
Computer Graphics

2

Application Invokes OpenGL Rendering
which Reads the Buffer Data

OpenGL Compute Shader – the Basic Idea

Application Invokes the Compute Shader
to Modify the OpenGL Buffer Data

A Shader Program, with only a Compute Shader in it

Another Shader Program, with pipeline rendering in it

mjb – May 25, 2017

Oregon State University
Computer Graphics

3Why Not Just Use OpenCL Instead?

OpenCL is great! It does a super job of using the GPU for general-purpose data-parallel computing.
And, OpenCL is more feature-rich than OpenGL compute shaders. So, why use Compute Shaders
ever if you’ve got OpenCL? Here’s what I think:

• OpenCL requires installing a separate driver and separate libraries. While this is not a huge deal,
it does take time and effort. When everyone catches up to OpenGL 4.3, Compute Shaders will
just “be there” as part of core OpenGL.

• Compute Shaders use the GLSL language, something that all OpenGL programmers should
already be familiar with (or will be soon).

• Compute shaders use the same context as does the OpenGL rendering pipeline. There is no
need to acquire and release the context as OpenGL+OpenCL must do.

• I’m assuming that calls to OpenGL compute shaders are more lightweight than calls to OpenCL
kernels are. (true?) This should result in better performance. (true? how much?)

• Using OpenCL is somewhat cumbersome. It requires a lot of setup (queries, platforms, devices,
queues, kernels, etc.). Compute Shaders look to be more convenient. They just kind of flow in
with the graphics.

The bottom line is that I will continue to use OpenCL for the big, bad stuff. But, for lighter-weight
data-parallel computing that interacts with graphics, I will use the Compute Shaders.

I suspect that a good example of a lighter-weight data-parallel graphics-related application is a
particle system. This will be shown here in the rest of these notes. I hope I’m right.

mjb – May 25, 2017

Oregon State University
Computer Graphics

4If I Know GLSL,
What Do I Need to Do Differently to Write a Compute Shader?

Not much:

1. A Compute Shader is created just like any other GLSL shader, except that
its type is GL_COMPUTE_SHADER (duh…). You compile it and link it
just like any other GLSL shader program.

2. A Compute Shader must be in a shader program all by itself. There
cannot be vertex, fragment, etc. shaders in there with it. (why?)

3. A Compute Shader has access to uniform variables and buffer objects, but
cannot access any pipeline variables such as attributes or variables from
other stages. It stands alone.

4. A Compute Shader needs to declare the number of work-items in each of
its work-groups in a special GLSL layout statement.

More information on items 3 and 4 are coming up . . .

mjb – May 25, 2017

Oregon State University
Computer Graphics

5

The OpenGL Rendering Draws the Particles
by Reading the Position Buffer

The Example We Are Going to Use Here is a Particle System

The Compute Shader Moves the Particles by
Recomputing the Position and Velocity Buffers

mjb – May 25, 2017

Oregon State University
Computer Graphics

6

#define NUM_PARTICLES 1024*1024 // total number of particles to move
#define WORK_GROUP_SIZE 128 // # work-items per work-group

struct pos
{

float x, y, z, w; // positions
};

struct vel
{

float vx, vy, vz, vw; // velocities
};

struct color
{

float r, g, b, a; // colors
};

// need to do the following for both position, velocity, and colors of the particles:

GLuint posSSbo;
GLuint velSSbo
GLuint colSSbo;

Note that .w and .vw are not actually needed. But, by making these structure sizes a multiple
of 4 floats, it doesn’t matter if they are declared with the std140 or the std430 qualifier. I
think this is a good thing. (is it?)

Setting up the Shader Storage Buffer Objects in Your C Program

mjb – May 25, 2017

Oregon State University
Computer Graphics

7

glGenBuffers(1, &posSSbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, posSSbo);
glBufferData(GL_SHADER_STORAGE_BUFFER, NUM_PARTICLES * sizeof(struct pos), NULL, GL_STATIC_DRAW);

GLint bufMask = GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT ; // the invalidate makes a big difference when re-writing

struct pos *points = (struct pos *) glMapBufferRange(GL_SHADER_STORAGE_BUFFER, 0, NUM_PARTICLES * sizeof(struct pos), bufMask);
for(int i = 0; i < NUM_PARTICLES; i++)
{

points[i].x = Ranf(XMIN, XMAX);
points[i].y = Ranf(YMIN, YMAX);
points[i].z = Ranf(ZMIN, ZMAX);
points[i].w = 1.;

}
glUnmapBuffer(GL_SHADER_STORAGE_BUFFER);

glGenBuffers(1, &velSSbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, velSSbo);
glBufferData(GL_SHADER_STORAGE_BUFFER, NUM_PARTICLES * sizeof(struct vel), NULL, GL_STATIC_DRAW);

struct vel *vels = (struct vel *) glMapBufferRange(GL_SHADER_STORAGE_BUFFER, 0, NUM_PARTICLES * sizeof(struct vel), bufMask);
for(int i = 0; i < NUM_PARTICLES; i++)
{

vels[i].vx = Ranf(VXMIN, VXMAX);
vels[i].vy = Ranf(VYMIN, VYMAX);
vels[i].vz = Ranf(VZMIN, VZMAX);
vels[i].vw = 0.;

}
glUnmapBuffer(GL_SHADER_STORAGE_BUFFER);

The same would possibly need to be done for the color shader storage buffer object

Setting up the Shader Storage Buffer Objects in Your C Program

mjb – May 25, 2017

Oregon State University
Computer Graphics

8

4 Work-Items

5 Work Groups

GlobalInvocationSizeWorkGroups
WorkGroupSize



205 4
4

x 

The Data Needs to be Divided into Large Quantities call Work-Groups, each of
which is further Divided into Smaller Units Called Work-Items

20 total items to compute:
The Invocation Space can be 1D,
2D, or 3D. This one is 1D.

mjb – May 25, 2017

Oregon State University
Computer Graphics

9

4 Work-Items

3
W

or
k-

Ite
m

s

5 Work-Groups

4
W

or
k-

G
ro

up
s

The Data Needs to be Divided into Large Quantities call Work-Groups, each of
which is further Divided into Smaller Units Called Work-Items

The Invocation Space can be 1D,
2D, or 3D. This one is 2D.

GlobalInvocationSizeWorkGroups
WorkGroupSize



20 125 4
4 3

xx
x



20x12 (=240) total items to compute:

mjb – May 25, 2017

Oregon State University
Computer Graphics

10Running the Compute Shader from the Application

void glDispatchCompute(num_groups_x, num_groups_y, num_groups_z);

num_groups_x

nu
m

_g
ro

up
s_

y

If the problem is 2D, then
num_groups_z = 1

If the problem is 1D, then
num_groups_y = 1 and
num_groups_z = 1

mjb – May 25, 2017

Oregon State University
Computer Graphics

11

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 4, posSSbo);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 5, velSSbo);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 6, colSSbo);

. . .

glUseProgram(MyComputeShaderProgram);
glDispatchCompute(NUM_PARTICLES / WORK_GROUP_SIZE, 1, 1);
glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT);

. . .

glUseProgram(MyRenderingShaderProgram);
glBindBuffer(GL_ARRAY_BUFFER, posSSbo);
glVertexPointer(4, GL_FLOAT, 0, (void *)0);
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(GL_POINTS, 0, NUM_PARTICLES);
glDisableClientState(GL_VERTEX_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, 0);

Invoking the Compute Shader in Your C/C++ Program

mjb – May 25, 2017

Oregon State University
Computer Graphics

12Special Pre-set Variables in the Compute Shader

in uvec3 gl_NumWorkGroups ;

const uvec3 gl_WorkGroupSize ;

in uvec3 gl_WorkGroupID ;

in uvec3 gl_LocalInvocationID ;

in uvec3 gl_GlobalInvocationID ;

in uint gl_LocalInvocationIndex ;

Same numbers as in the glDispatchCompute call

Same numbers as in the layout local_size_*

Which workgroup this thread is in

Where this thread is in the current workgroup

Where this thread is in all the work items

1D representation of the gl_LocalInvocationID
(used for indexing into a shared array)

0 ≤ gl_WorkGroupID ≤ gl_NumWorkGroups – 1

0 ≤ gl_LocalInvocationID ≤ gl_WorkGroupSize – 1

gl_GlobalInvocationID = gl_WorkGroupID * gl_WorkGroupSize + gl_LocalInvocationID

gl_LocalInvocationIndex = gl_LocalInvocationID.z * gl_WorkGroupSize.y * gl_WorkGroupSize.x +
gl_LocalInvocationID.y * gl_WorkGroupSize.x +
gl_LocalInvocationID.x

mjb – May 25, 2017

Oregon State University
Computer Graphics

13
#version 430 compatibility
#extension GL_ARB_compute_shader : enable
#extension GL_ARB_shader_storage_buffer_object : enable;

layout(std140, binding=4) buffer Pos
{

vec4 Positions[]; // array of structures
};

layout(std140, binding=5) buffer Vel
{

vec4 Velocities[]; // array of structures
};

layout(std140, binding=6) buffer Col
{

vec4 Colors[]; // array of structures
};

layout(local_size_x = 128, local_size_y = 1, local_size_z = 1) in;

The Particle System Compute Shader -- Setup

You can use the empty
brackets, but only on the
last element of the buffer.
The actual dimension will be
determined for you when
OpenGL examines the size
of this buffer’s data store.

mjb – May 25, 2017

Oregon State University
Computer Graphics

14

const vec3 G = vec3(0., -9.8, 0.);
const float DT = 0.1;

. . .

uint gid = gl_GlobalInvocationID.x; // the .y and .z are both 1 in this case

vec3 p = Positions[gid].xyz;
vec3 v = Velocities[gid].xyz;

vec3 pp = p + v*DT + .5*DT*DT*G;
vec3 vp = v + G*DT;

Positions[gid].xyz = pp;
Velocities[gid].xyz = vp;

21'
2

'

p p v t G t

v v G t

    

  

The Particle System Compute Shader – The Physics

mjb – May 25, 2017

Oregon State University
Computer Graphics

15

const vec4 SPHERE = vec4(-100., -800., 0., 600.); // x, y, z, r
// (could also have passed this in)

vec3
Bounce(vec3 vin, vec3 n)
{

vec3 vout = reflect(vin, n);
return vout;

}

vec3
BounceSphere(vec3 p, vec3 v, vec4 s)
{

vec3 n = normalize(p - s.xyz);
return Bounce(v, n);

}

bool
IsInsideSphere(vec3 p, vec4 s)
{

float r = length(p - s.xyz);
return (r < s.w);

}

The Particle System Compute Shader –
How About Introducing a Bounce?

in out
n

mjb – May 25, 2017

Oregon State University
Computer Graphics

16

uint gid = gl_GlobalInvocationID.x; // the .y and .z are both 1 in this case

vec3 p = Positions[gid].xyz;
vec3 v = Velocities[gid].xyz;

vec3 pp = p + v*DT + .5*DT*DT*G;
vec3 vp = v + G*DT;

if(IsInsideSphere(pp, SPHERE))
{

vp = BounceSphere(p, v, SPHERE);
pp = p + vp*DT + .5*DT*DT*G;

}

Positions[gid].xyz = pp;
Velocities[gid].xyz = vp;

The Particle System Compute Shader –
How About Introducing a Bounce?

21'
2

'

p p v t G t

v v G t

    

  

Graphics Trick Alert: Making the bounce
happen from the surface of the sphere is
time-consuming. Instead, bounce from the
previous position in space. If DT is small
enough, nobody will ever know…

mjb – May 25, 2017

Oregon State University
Computer Graphics

17The Bouncing Particle System Compute Shader –
What Does It Look Like?

