OSU’s College of Engineering bought six Nvidia DGX-2 systems

Each DGX server:
- Has 16 NVidia Tesla V100 GPUs
- Has 28TB of disk, all SSD
- Has two 24-core Intel Xeon 8168 Platinum 2.7GHz CPUs
- Has 1.5TB of DDR4-2666 System Memory
- Runs the CentOS 7 Linux operating system

Overall compute power:
- Each V100 NVidia Tesla card has 5,120 CUDA Cores and 640 Tensor Cores
- This gives each 16-V100 DGX server a total of 81,920 CUDA cores and 10,240 Tensor cores
- This gives the entire 6-DGX package a total of 491,520 CUDA Cores and 61,440 Tensor Cores
Performance Comparison with one of our previous Systems

DGX2 vs. Rabbit for Monte Carlo Calculations

BTW, you can also use the rabbit machine:

```
ssh rabbit.engr.oregonstate.edu
```

It is a good place to write your code and get it to compile. It is not a good place to run your code.

How to SSH to the DGX Systems

```
flip3 151%  ssh  submit-c.hpc.engr.oregonstate.edu
```

```
submit-c 142%  module load slurm
```

Type this right away to set your path correctly.

ssh over to a DGX submission machine -- submit-a and submit-b will also work
How to Check on the DGX Systems

submit-c 143% squeue

<table>
<thead>
<tr>
<th>JOBID</th>
<th>PARTITION</th>
<th>NAME</th>
<th>USER</th>
<th>ST</th>
<th>TIME</th>
<th>NODES</th>
<th>Nodelist(REASON)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3923</td>
<td>mime4</td>
<td>c_only</td>
<td>jayasurw</td>
<td>R</td>
<td>1-10:32:19</td>
<td>1</td>
<td>compute-e-1</td>
</tr>
<tr>
<td>3963</td>
<td>mime4</td>
<td>2bash</td>
<td>jayasurw</td>
<td>R</td>
<td>16:21:03</td>
<td>1</td>
<td>compute-e-2</td>
</tr>
<tr>
<td>3876</td>
<td>share</td>
<td>CH3COOH</td>
<td>chukwuk</td>
<td>R</td>
<td>1-23:36:45</td>
<td>1</td>
<td>compute-2-6</td>
</tr>
<tr>
<td>3971</td>
<td>ncrhp</td>
<td>tcsh</td>
<td>dion nec</td>
<td>R</td>
<td>8:59:45</td>
<td>1</td>
<td>compute-h-8</td>
</tr>
<tr>
<td>3881</td>
<td>dgx2</td>
<td>bash</td>
<td>heli</td>
<td>R</td>
<td>1-22:50:44</td>
<td>1</td>
<td>compute-dgx2-1</td>
</tr>
<tr>
<td>3965</td>
<td>dgx2</td>
<td>bash</td>
<td>chenju3</td>
<td>R</td>
<td>13:47:36</td>
<td>1</td>
<td>compute-dgx2-4</td>
</tr>
<tr>
<td>3876</td>
<td>share</td>
<td>CH3COOH_</td>
<td>chukwuk</td>
<td>R</td>
<td>1-23:36:45</td>
<td>1</td>
<td>compute-2-6</td>
</tr>
<tr>
<td>3971</td>
<td>ncrhp</td>
<td>tcsh</td>
<td>dion nec</td>
<td>R</td>
<td>8:59:45</td>
<td>1</td>
<td>compute-h-8</td>
</tr>
<tr>
<td>3881</td>
<td>dgx2</td>
<td>bash</td>
<td>heli</td>
<td>R</td>
<td>1-22:50:44</td>
<td>1</td>
<td>compute-dgx2-1</td>
</tr>
<tr>
<td>3965</td>
<td>dgx2</td>
<td>bash</td>
<td>chenju3</td>
<td>R</td>
<td>13:47:36</td>
<td>1</td>
<td>compute-dgx2-4</td>
</tr>
<tr>
<td>3876</td>
<td>share</td>
<td>CH3COOH_</td>
<td>chukwuk</td>
<td>R</td>
<td>1-23:36:45</td>
<td>1</td>
<td>compute-2-6</td>
</tr>
<tr>
<td>3971</td>
<td>ncrhp</td>
<td>tcsh</td>
<td>dion nec</td>
<td>R</td>
<td>8:59:45</td>
<td>1</td>
<td>compute-h-8</td>
</tr>
<tr>
<td>3881</td>
<td>dgx2</td>
<td>bash</td>
<td>heli</td>
<td>R</td>
<td>1-22:50:44</td>
<td>1</td>
<td>compute-dgx2-1</td>
</tr>
<tr>
<td>3965</td>
<td>dgx2</td>
<td>bash</td>
<td>chenju3</td>
<td>R</td>
<td>13:47:36</td>
<td>1</td>
<td>compute-dgx2-4</td>
</tr>
</tbody>
</table>

submit-c 144% sinfo

<table>
<thead>
<tr>
<th>PARTITION</th>
<th>AVAIL</th>
<th>TIMELIMIT</th>
<th>NODES</th>
<th>STATE</th>
<th>NODELIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>share*</td>
<td>up</td>
<td>7-00:00:00</td>
<td>2</td>
<td>drain</td>
<td>compute-4-[3-4]</td>
</tr>
<tr>
<td>share*</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td></td>
<td>mix compute-2-6</td>
</tr>
<tr>
<td>sharegpu</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td></td>
<td>mix compute-dgxs-1</td>
</tr>
<tr>
<td>sharegpu</td>
<td>up</td>
<td>7-00:00:00</td>
<td>3</td>
<td></td>
<td>idle compute-dgxs-[2-3],compute-gpu</td>
</tr>
<tr>
<td>dgp2</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td></td>
<td>drain compute-dgp2-2</td>
</tr>
<tr>
<td>dgp2</td>
<td>up</td>
<td>7-00:00:00</td>
<td>5</td>
<td></td>
<td>mix compute-dgxs-2-[1,3,6]</td>
</tr>
<tr>
<td>gpup</td>
<td>up</td>
<td>7-00:00:00</td>
<td>2</td>
<td></td>
<td>mix compute-gpus[3-4]</td>
</tr>
<tr>
<td>gpup</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td></td>
<td>idle compute-gpu2</td>
</tr>
<tr>
<td>gpup</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td></td>
<td>down compute-gpu1</td>
</tr>
<tr>
<td>dgp2</td>
<td>up</td>
<td>7-00:00:00</td>
<td>3</td>
<td></td>
<td>mix compute-dgxs-2-[4,6]</td>
</tr>
<tr>
<td>dgp2</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td></td>
<td>mix compute-dgxs-1</td>
</tr>
<tr>
<td>dgp2</td>
<td>up</td>
<td>7-00:00:00</td>
<td>2</td>
<td></td>
<td>idle compute-dgxs-[2-3]</td>
</tr>
<tr>
<td>class</td>
<td>up</td>
<td>1-00:00:00</td>
<td>1</td>
<td></td>
<td>mix compute-dgxs-1</td>
</tr>
<tr>
<td>class</td>
<td>up</td>
<td>1-00:00:00</td>
<td>2</td>
<td></td>
<td>idle compute-dgxs-[2-3]</td>
</tr>
<tr>
<td>eecs</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td></td>
<td>mix compute-2-6</td>
</tr>
</tbody>
</table>

Submit the job described in your shell file

submit-c 143% sbatch submit.bash
Submitted batch job 474

submit-c 144% cat matrixmul.err

Check the output
(I like sending my output to standard error, not standard output)
What Showed up in my Email

<table>
<thead>
<tr>
<th>From</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slurm workload manager</td>
<td>Slurm Job id=3980 Name=MatrixMul Ended, Run time 00:00:12, COMPLETED. ExitCode 0</td>
</tr>
<tr>
<td>Slurm workload manager</td>
<td>Slurm Job id=3980 Name=MatrixMul Began, Queued time 00:00:01</td>
</tr>
</tbody>
</table>

Submitting a Loop

submitloop.bash:

```
#!/bin/bash
#SBATCH -J MatrixMul
#SBATCH -A cs475-575
#SBATCH -p class
#SBATCH --gres=gpu:1
#SBATCH -o matrixmul.out
#SBATCH -e matrixmul.err
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --mail-user=joeparallel@oregonstate.edu
for t in 1 2 4 8 16 32
do
   /usr/local/apps/cuda/cuda-10.1/bin/nvcc -DNUMT=$t -o matrixMul matrixMul.cu
   ./matrixMul
done
```

submit-c 153% sbatch submitloop.bash
Submitted batch job 475

submit-c 154% tail --f matrixmul.err

Displays the latest output added to matrixmul.err. Keeps doing it forever.

Control-c to get out of it.
Results for Multiplying two 1024x1024 Matrices

GigaFlops during Matrix Multiplication

GigaFlops

NUMT

(A CUDA block was actually $NUMT \times NUMT$ threads)

Use slurm's `scancel` if your Job Needs to Be Killed

```
submit-c 163\% sbatch submitloop.bash
Submitted batch job 476
```

```
submit-c 164\% scancel 476
```
Submitting an OpenCL job to the DGX Systems using Slurm

submit.bash:

```bash
#!/bin/bash
#SBATCH -J MatrixMult
#SBATCH -A cs475-575
#SBATCH -p class
#SBATCH --gres=gpu:1
#SBATCH -o printinfo.out
#SBATCH -e printinfo.err
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --mail-user=joeparallel@oregonstate.edu
g++ -o printinfo printinfo.cpp /usr/local/apps/cuda/cuda-10.1/lib64/libOpenCL.so.1.1 -lm -fopenmp
./printinfo
```

Here's What `printinfo` Got on the DGX System

- **Number of Platforms = 1**
- **Platform #0:**
 - Name = 'NVIDIA CUDA'
 - Vendor = 'NVIDIA Corporation'
 - Version = 'OpenCL 1.2 CUDA 10.1.351'
 - Profile = 'FULL_PROFILE'
 - Number of Devices = 1
- **Device #0:**
 - Type = 0x0004 = CL_DEVICE_TYPE_GPU
 - Device Vendor ID = 0x10de (NVIDIA)
 - Device Maximum Compute Units = 80
 - Device Maximum Work Item Dimensions = 3
 - Device Maximum Work Item Sizes = 1024 x 1024 x 64
 - Device Maximum Work Group Size = 1024
 - Device Maximum Clock Frequency = 1530 MHz
- **Device Extensions:**
 - cl_khr_global_int32_base_atomics
 - cl_khr_global_int32_extended_atomics
 - cl_khr_local_int32_base_atomics
 - cl_khr_local_int32_extended_atomics
 - cl_khr_fp64
 - cl_khr_byte_addressable_store
 - cl_khr_icd
 - cl_khr_gl_sharing
 - cl_nv_compiler_options
 - cl_nv_device_attribute_query
 - cl_nv pragma unroll
 - cl_nv_copy_opts
 - cl_nv_create_buffer