Parallel Programming:
Moore’s Law and Multicore

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

moores.law.and.multicore.pptx
Von Neumann Architecture: Basically the fundamental pieces of a CPU have not changed since the 1960s

Other elements:
- Clock
- Registers
- Program counter
- Stack pointer
Increasing Transistor Density -- Moore’s Law

“Transistor density doubles every 1.5 years.”

Note: Log scale!

Oftentimes people have \textit{(incorrectly)} equivalenced this to: “Clock speed doubles every 1.5 years.”

If I fit this line to the plot, I get a doubling every 1.6 years.
Increasing Clock Speed?

Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun)

Note: Log scale!

Source: Intel

Transistor count
Clock speed
Power being consumed
Moore’s Law

- Fabrication process size ("gate pitch") has fallen from 65 nm, to 45 nm, to 32 nm, to 22 nm, to 16 nm, to 11 nm, to 8 nm. This translates to more transistors on the same size die.

- From 1986 to 2002, processor performance increased an average of 52%/year, but then virtually plateaued.
Clock Speed and Power Consumption

<table>
<thead>
<tr>
<th>Year</th>
<th>Processor</th>
<th>Clock Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>IBM PC</td>
<td>5 MHz</td>
</tr>
<tr>
<td>1995</td>
<td>Pentium</td>
<td>100 MHz</td>
</tr>
<tr>
<td>2002</td>
<td>Pentium 4</td>
<td>3000 MHz (3 GHz)</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td>3800 MHz (3.8 GHz)</td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td>4000 MHz (4.0 GHz)</td>
</tr>
</tbody>
</table>

Clock speed has hit a plateau, largely because of power consumption and dissipation.

\[\text{Power Consumption} \propto \text{Clock Speed}^2 \]

Once consumed, that power becomes *heat*, which must be dissipated somehow. In general, compute systems can remove around 150 watts/cm² without resorting to exotic cooling methods.
And, speaking of “exotic”, AMD set the world record for clock speed (8.429 GHz) using a Liquid Nitrogen-cooled CPU.

Source: AMD
What Kind of Power Density Dissipation Would it Have Taken to Keep up with Clock Speed Trends?

Source: Intel
So, to summarize:

Moore’s Law of transistor density is still going, but the “Moore’s Law” of clock speed has hit a wall. Now what do we do?

We keep packing more and more transistors on a single chip, but don’t increase the clock speed. Instead, we increase computational throughput by using those transistors to pack multiple processors onto the same chip.

This is referred to as *multicore*.

Vendors have also reacted by adding SIMD floating-point units on the chip as well. We will get to that later.
MultiCore and Multithreading

Multicore, even without multithreading too, is still a good thing. It can be used, for example, to allow multiple programs on a desktop system to always be executing concurrently.

Multithreading, even without multicore too, is still a good thing. Threads can make it easier to logically have many things going on in your program at a time, and can absorb the dead-time of other threads.

But, the big gain in performance is to use both to speed up a single program. For this, we need a combination of both multicore and multithreading.

Multicore is a very hot topic these days. It would be hard to buy a CPU that doesn’t have more than one core. We, as programmers, get to take advantage of that.

We need to be prepared to convert our programs to run on MultiThreaded Shared Memory Multicore architectures.
Each of the Multiple Cores keeps its own State

- 1 core, 1 state
- 2 cores, 2 states
- 4 cores, 4 states

- Registers
- Program Counter
- Stack Pointer
So, if that’s what Multicore is about, what is *Hyperthreading*?

- 1 core, 1 state
- 1 core, 2 states, with Hyperthreading
- 2 cores, 2 states
- 2 cores, 4 states, with Hyperthreading
- 4 cores, 4 states
Four Cores with Two Hyperthreads per Core

Note that this is upside-down from our usual convention. Sorry. I got this from someone else.

Source: Erzhuo Che