Parallel Programming: Moore’s Law and Multicore

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Von Neumann Architecture: Basically the fundamental pieces of a CPU have not changed since the 1960s

Other elements:
- Clock
- Registers
- Program counter
- Stack pointer
Increasing Transistor Density -- Moore’s Law

“Transistor density doubles every 1.5 years.”

Oftentimes people have \textit{(incorrectly)} equivalenced this to: “Clock speed doubles every 1.5 years.”

Note: Log scale!

If I fit this line to the plot, I get a doubling every 1.6 years.
Increasing Clock Speed?

Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun)

- Transistor count
- Clock speed
- Power being consumed

Note: Log scale!

Source: Intel
Moore’s Law

- Fabrication process size ("gate pitch") has fallen from 65 nm, to 45 nm, to 32 nm, to 22 nm, to 16 nm, to 11 nm, to 8 nm. This translates to more transistors on the same size die.

- From 1986 to 2002, processor performance increased an average of 52%/year, but then virtually plateaued.
Clock Speed and Power Consumption

<table>
<thead>
<tr>
<th>Year</th>
<th>Processor</th>
<th>Clock Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>IBM PC</td>
<td>5 MHz</td>
</tr>
<tr>
<td>1995</td>
<td>Pentium</td>
<td>100 MHz</td>
</tr>
<tr>
<td>2002</td>
<td>Pentium 4</td>
<td>3000 MHz (3 GHz)</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td>3800 MHz (3.8 GHz)</td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td>4000 MHz (4.0 GHz)</td>
</tr>
</tbody>
</table>

Clock speed has hit a plateau, largely because of power consumption and dissipation.

\[\text{PowerConsumption} \propto \text{ClockSpeed}^2 \]

Yikes!

Once consumed, that power becomes heat, which much be dissipated somehow. In general, compute systems can remove around 150 watts/cm without resorting to exotic cooling methods.
And, speaking of “exotic”, recently, AMD set the world record for clock speed (8.429 GHz) using a Liquid Nitrogen-cooled CPU

Source: AMD
What Kind of Power Density Dissipation Would it Have Taken to Keep up with Clock Speed Trends?

Source: Intel
So, to summarize:

Moore’s Law of transistor density is still going, but the “Moore’s Law” of clock speed has hit a wall. Now what do we do?

We keep packing more and more transistors on a single chip, but don’t increase the clock speed. Instead, we increase computational throughput by using those transistors to pack multiple processors onto the same chip.

This is referred to as *multicore*.

Vendors have also reacted by adding SIMD floating-point units on the chip as well. We will get to that later.
MultiCore and Multithreading

Multicore, even without multithreading too, is still a good thing. It can be used, for example, to allow multiple programs on a desktop system to always be executing concurrently.

Multithreading, even without multicore too, is still a good thing. Threads can make it easier to logically have many things going on in your program at a time, and can absorb the dead-time of other threads.

But, the big gain in performance is to use *both* to speed up a *single program*. For this, we need a **combination of both multicore and multithreading**.

Multicore is a very hot topic these days. It would be hard to buy a CPU that doesn’t have more than one core. We, as programmers, get to take advantage of that.

We need to be prepared to convert our programs to run on **MultiThreaded Shared Memory Multicore** architectures.
Intel’s Approach to Multicore and Multithreading

Note: these are not the same!!

(Count the Execution Units)

“HT” stands for “HyperThreading”

Source: Intel
Note that this is upside-down from our usual convention. Sorry, I got this from someone else.

Source: Erzhuo Che