Parallel Programming:
Moore's Law and Multicore

Mike Bailey
mjb@cs.oregonstate.edu

Von Neumann Architecture:
Basicly the fundamental pieces of a CPU
have not changed since the 1960s

Memory
Control Unit
Arithmetic Logic Unit
Accumulator

Other elements:
- Clock
- Registers
- Program counter
- Stack pointer

Increasing Transistor Density – Moore’s Law

"Transistor density doubles every 1.5 years."
Note: Log scale!

If I fit this line to the plot, I get a doubling
every 1.6 years.

Ofentimes people have (incorrectly) equivalenced this to:
"Clock speed doubles every 1.5 years."

Increasing Clock Speed?

Note: Log scale!

Transistor count
Clock speed
Power being consumed

Source: Intel

Source: Intel
Wikipedia, E. Oldschen
Moore’s Law

- Fabrication process size (“gate pitch”) has fallen from 65 nm, to 45 nm, to 32 nm, to 22 nm, to 16 nm, to 11 nm, to 8 nm. This translates to more transistors on the same size die.

- From 1986 to 2002, processor performance increased an average of 52% per year, but then virtually plateaued.

Clock Speed and Power Consumption

<table>
<thead>
<tr>
<th>Year</th>
<th>Processor</th>
<th>Clock Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>IBM PC</td>
<td>5 MHz</td>
</tr>
<tr>
<td>1995</td>
<td>Pentium</td>
<td>100 MHz</td>
</tr>
<tr>
<td>2002</td>
<td>Pentium 4</td>
<td>3000 MHz (3 GHz)</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td>3800 MHz (3.8 GHz)</td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td>4000 MHz (4.0 GHz)</td>
</tr>
</tbody>
</table>

Clock speed has hit a plateau, largely because of power consumption and dissipation.

\[
\text{Power Consumption} \propto \text{Clock Speed}^2
\]

Yikes!

Once consumed, that power becomes heat, which must be dissipated somehow. In general, compute systems can remove around 150 W/cm² without resorting to exotic cooling methods.

And, speaking of “exotic”, AMD set the world record for clock speed (8.429 GHz) using a Liquid Nitrogen-cooled CPU.

Source: AMD

What Kind of Power Density Dissipation Would it Have Taken to Keep up with Clock Speed Trends?

Source: Intel
So, to summarize:

Moore’s Law of transistor density is still going, but the “Moore’s Law” of clock speed has hit a wall. Now what do we do?

We keep packing more and more transistors on a single chip, but don’t increase the clock speed. Instead, we increase computational throughput by using those transistors to pack multiple processors onto the same chip.

This is referred to as **multicore**.

Vendors have also reacted by adding SIMD floating-point units on the chip as well. We will get to that later.

Multicore is a very hot topic these days. It would be hard to buy a CPU that doesn’t have more than one core. We, as programmers, get to take advantage of that. We need to be prepared to convert our programs to run on **Multithreaded Shared Memory Multicore** architectures.

Multicore, even without multithreading too, is still a good thing. It can be used, for example, to allow multiple programs on a desktop system to always be executing concurrently.

Multithreading, even without multicore too, is still a good thing. Threads can make it easier to logically have many things going on in your program at a time, and can absorb the dead-time of other threads.

But, the big gain in performance is to use both to speed up a single program. For this, we need a **combination of both multicore and multithreading**.

Each of the Multiple Cores keeps its own State

1 core, 1 state
2 cores, 2 states
4 cores, 4 states

State	Core	Cache
• Registers
• Program Counter
• Stack Pointer

So, if that’s what Multicore is about, what is **Hyperthreading**?

1 core, 1 state
1 core, 2 states, with Hyperthreading
2 cores, 2 states
2 cores, 4 states, with Hyperthreading
4 cores, 4 states
Four Cores with Two Hyperthreads per Core

Note that this is upside-down from our usual convention. Sorry. I got this from someone else.