
1

mjb – , March 21, 2025

1

Computer Graphics

OpenCL Events

opencl.events.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – , March 21, 2025

2

Computer Graphics

OpenCL Events

An event is an object that communicates the status of OpenCL commands

Write
Buffer dA

Write
Buffer dB

Execute
Kernel

Read
Buffer dC

Event

Whopp-a, whopp-a

mjb – , March 21, 2025

3

Computer Graphics

size_t globalWorkSize[3] = { NUM_ELEMENTS, 1, 1 };
size_t localWorkSize[3] = { LOCAL_SIZE, 1, 1 } ;

status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, localWorkSize, 0, NULL, NULL);

From the OpenCL Notes:
11. Enqueue the Kernel Object for Execution

status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, localWorkSize, 0, NULL, NULL);

event wait
list

events to wait for before this
kernel is allowed to execute

event that will be thrown when this
kernel is finished executing

mjb – , March 21, 2025

4

Computer Graphics

cl_event waitKernelA, waitKernel B, waitKernelC;

status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, localWorkSize, 0, NULL, &waitKernelC);

Creating an Event

event(s) to wait for before this
kernel is allowed to execute

}

event that will be thrown when this
kernel is finished executing

mjb – , March 21, 2025

5

Computer Graphics

cl_event waitKernelA, waitKernel B, waitKernelC;

. . .

cl_event dependenciesAB[2];

dependenciesAB[0] = waitKernelA;
dependenciesAB[1] = waitKernelB;

status = clEnqueueNDRangeKernel(cmdQueue, kernelC, 1, NULL, globalWorkSize, localWorkSize, 2, dependenciesAB, NULL);

Waiting for Events from Previously-Executed Kernels

}

C

B

A

event that will be thrown when this
kernel is finished executing

event(s) to wait for before this
kernel is allowed to execute

mjb – , March 21, 2025

6

Computer Graphics

cl_event waitKernelA, waitKernel B, waitKernelC;

cl_event dependenciesAB[2];

dependenciesAB[0] = waitKernelA;
dependenciesAB[1] = waitKernelB;

status = clEnqueueNDRangeKernel(cmdQueue, kernelC, 1, NULL, globalWorkSize, localWorkSize, 2, dependenciesAB, &waitKernelC);

Creating an Execution Graph Structure

}

D

E
C

B

A

event that will be thrown when this
kernel is finished executing

event(s) to wait for before this
kernel is allowed to execute

2

mjb – , March 21, 2025

7

Computer Graphics

cl_event waitKernelA, waitKernel B, waitKernelC, waitKernelD;

cl_event dependenciesAB[2];
dependenciesAB[0] = waitKernelA;
dependenciesAB[1] = waitKernelB;

cl_event dependenciesCD[2];
dependenciesCD[0] = waitKernelC;
dependenciesCD[1] = waitKernelD;

status = clEnqueueNDRangeKernel(cmdQueue, kernelA, 1, NULL, globalWorkSize, localWorkSize, 0, NULL, &waitKernelA);
status = clEnqueueNDRangeKernel(cmdQueue, kernelB, 1, NULL, globalWorkSize, localWorkSize, 0, NULL, &waitKernelB);
status = clEnqueueNDRangeKernel(cmdQueue, kernelC, 1, NULL, globalWorkSize, localWorkSize, 2, dependenciesAB, &waitKernelC);
status = clEnqueueNDRangeKernel(cmdQueue, kernelD, 1, NULL, globalWorkSize, localWorkSize, 0, NULL, &waitKernelD);
status = clEnqueueNDRangeKernel(cmdQueue, kernelE, 1, NULL, globalWorkSize, localWorkSize, 2, dependenciesCD, NULL);

Creating the Full Execution Graph Structure

D

E
C

B

A

mjb – , March 21, 2025

8

Computer Graphics

cl_event waitKernelA, waitKernel B.

. . .

status = clEnqueueNDRangeKernel(cmdQueue, kernelC, 1, NULL, globalWorkSize, localWorkSize, 1, &waitKernelA, NULL);

Waiting for One Event

event(s) to wait for

}

mjb – , March 21, 2025

9

Computer Graphics

Placing a Barrier in the Command Queue

status = clEnqueueBarrier(cmdQueue);

This does not complete until all commands enqueued before it have completed.

Note: this cannot throw its own event

mjb – , March 21, 2025

10

Computer Graphics

Placing an Event Marker in the Command Queue

cl_event waitMarker;

status = clEnqueueMarker(cmdQueue, &waitMarker);

This does not complete until all commands enqueued before it have completed.

This is just like a barrier, but it can throw an event to be waited for.

Note: this can throw its own event

mjb – , March 21, 2025

11

Computer Graphics

Waiting for Events Without Enqueuing Another Command

status = clWaitForEvents(2, dependencies);

This blocks until the specified events are thrown, so use it carefully!

event(s) to wait for

}

mjb – , March 21, 2025

12

Computer Graphics

// wait until all queued tasks have taken place:

void
Wait(cl_command_queue queue)
{

cl_event wait;
cl_int status;

status = clEnqueueMarker(queue, &wait);
if(status != CL_SUCCESS)

fprintf(stderr, "Wait: clEnqueueMarker failed\n");

status = clWaitForEvents(1, &wait); // blocks until everything is done!
if(status != CL_SUCCESS)

fprintf(stderr, "Wait: clWaitForEvents failed\n");
}

I Like Synchronizing Things This Way

Call this before starting the timer, before ending the timer, and before retrieving
data from an array computed in an OpenCL program.

3

mjb – , March 21, 2025

13

Computer Graphics

Getting Event Statuses Without Blocking

CL_QUEUED
CL_SUBMITTED
CL_RUNNING
CL_COMPLETE

cl_int eventStatus;

status = clGetEventInfo(waitKernelC, CL_EVENT_COMMAND_EXECUTION_STATUS, sizeof(cl_int),
&eventStatus, NULL);

Note that this a nice way to check on event statuses without blocking. Thus, you could put
this in a loop and go get some other work done in between calls.

CL_EVENT_COMMAND_QUEUE
CL_EVENT_CONTEXT
CL_EVENT_COMMAND_TYPE
CL_EVENT_COMMAND_EXECUTION_STATUS

Specify one of these

CL_EVENT_COMMAND_EXECUTION_STATUS
returns one of these

cl_int is what type
CL_EVENT_COMMAND_EXECUTION_STATUS

returns

