Parallel Program Design Patterns and Strategies

Mike Bailey
mjb@cs.oregonstate.edu
Oregon State University
1. Patterns for Functional Decomposition

2. Patterns for Distributing Tasks to Processors

3. Patterns for Data Decomposition

The goal of this section is to look at some of the common design and programming patterns one encounters in parallel programming and to understand some of the nuances one encounters.
The Functional Decomposition Design Pattern

Overall Problem

Thread 0

Thread 1

Thread 2

Thread 3
The Functional (or Task) Decomposition Design Pattern

Credit: Maxis (Sim Park)
Task Distribution Design Patterns for Parallelism

- **Thread-to-Thread**

- **Broadcast**

- **Reduction**

- **Scatter**

- **Gather**
Task Distribution Design Patterns for Parallelism

Decentralized (Peer)

“Peer-threads”
Task Distribution Design Patterns for Parallelism

Manager / workers

Input → "Manager-thread" → "Worker-threads" → Output
Task Distribution Design Patterns for Parallelism

Map-Reduce

Input → "Map-thread" → "Accumulate-thread" → Output

"Worker-threads"
Task Distribution Design Patterns for Parallelism

Pipeline

Requires some sort of queue between the stages
You have a steel bar. Each section of the bar starts out at a different temperature. There are no incoming heat sources or outgoing heat sinks (i.e., ignore boundary conditions). Ready, go! How do the temperatures change over time?

The fundamental differential equation here is:

$$\rho C \frac{\partial T}{\partial t} = k \left(\frac{\partial^2 T}{\partial x^2} \right)$$

where:

- ρ is the density in kg/m3
- C is the specific heat capacity measured in Joules / (kg·°K)
- k is the coefficient of thermal conductivity measured in Watts / (meter·°K)

(These units work because a Watt is a Joule/second.)

In plain words, this all means that temperatures, left to themselves, try to even out. The greater the temperature differential, the faster the evening-out process goes.
Numerical Methods: Changing a Derivative into Discrete Arithmetic

\[
\frac{\partial T}{\partial t} = \frac{T_{t+\Delta t} - T_t}{\Delta t}
\]

\[
\frac{\partial^2 T}{\partial x^2} = \frac{T_{i-1} - 2T_i + T_{i+1}}{(\Delta x)^2}
\]
Multicore Block Data Decomposition:
1D Heat Transfer Example

\[
\rho C \frac{\partial T}{\partial t} = k \left(\frac{\partial^2 T}{\partial x^2} \right)
\]

\[
\frac{\Delta T}{\Delta t} = \frac{k}{\rho C} \left(\frac{\Delta^2 T}{\Delta x^2} \right)
\]

\[
\Delta T_i = \left(\frac{k}{\rho C} \right) \left(\frac{T_{i-1} - 2T_i + T_{i+1}}{(\Delta x)^2} \right) \Delta t
\]

As a side note: the quantity \(k/(\rho C) \) has the unlikely units of \(m^2/sec \)!
1D Data Decomposition: Partitioning Strategies

Should you allocate the data as one large global-memory block (i.e., shared)?

Or, should you allocate it as separate arrays, each dedicated to its own core?

Does it matter?
Allocate as One Large Continuous Global or Malloc’ed Array

```c
float Temps[ARRAYSIZE];
float *Temps = (float *)malloc(ARRAYSIZE*sizeof(float));
float *Temps = new float[ARRAYSIZE];
<< allocate a new[ ] array the same way >>

omp_set_num_threads(4);
for( int t = 0; t < NUM_TIME_STEPS; t++ )
{
    #pragma omp parallel for default(none), shared(Temperatures)
    for( int i = 1; i < ARRAYSIZE-1; i++ )
    {
        "compute \( \Delta T_i \) using \( T_{i-1}, T_i, \) and \( T_{i+1} \)" >>
        new[ i ] = Temps[ i ] + \( \Delta T_i \);
    }
<< copy the new[ ] array to the Temps[ ] array >>
}
```

What happens when computing at the boundaries? Two cores are accessing the same cache line.

False Sharing!
Allocate as Separate Sub-arrays

We could make each sub-array as a thread-local (i.e., private) variable. This would put each sub-array on each thread’s individual stack. But, let’s not do that just in case these arrays might be large enough to overflow the stack. Although, if we did, it wouldn’t change this story.

Be sure to start each sub-array on its own cache line boundary. (See cache notes.)

But, now when we

\[
\text{compute } \Delta T_i \text{ using } T_{i-1}, T_i, \text{ and } T_{i+1} \]

at the boundaries, \(T_{i-1} \) or \(T_{i+1} \) might be in another sub-array.

So, we need some logic to reach into the other sub-array to get the adjacent temperature. It is no longer as easy as saying Temps[i-1] or Temps[i+1].
1D Compute-to-Communicate Ratio

Intracore computing

Intercore communication

Compute : Communicate ratio = N : 2

where N is the number of compute cells per core

In the above drawing, Compute : Communicate is 4 : 2
How do more Cores Interact with the Compute-to-Communicate Ratio?

In this case, with 4 cores, Compute : Communicate = 4 : 2

In this case, with 8 cores, Compute : Communicate = 2 : 2

Think if it as a Goldilocks and the Three Bears sort of thing. :-)

Too little Compute : Communicate and you are spending all your time sharing data values across threads and doing too little computing.

Too much Compute : Communicate and you are not spreading out your problem among enough threads to get good parallelism.

It’s difficult to find the “sweet spot” without running experiments.
Performance as a Function of Number of Nodes

MegaNodes Computed Per Second

of Nodes to Compute

of Threads
Performance as a Function of Number of Threads

MegaNodes Computed Per Second

of Threads vs. # of Nodes

The graph illustrates the performance of MegaNodes computed per second as a function of the number of threads for different numbers of nodes. Each line represents a different number of nodes, as indicated by the legend.

- 8192 nodes: Blue line with diamonds
- 6144 nodes: Red line with squares
- 4094 nodes: Green line with triangles
- 2048 nodes: Purple line with crosses
- 1024 nodes: Cyan line with pluses
- 512 nodes: Orange line with circles
- 256 nodes: Blue line with stars

The performance peaks at a certain number of threads for each node count, after which it decreases.
2D Heat Transfer Equation

\[\rho C \frac{\partial T}{\partial t} = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) \]

\[\Delta T = \frac{k}{\rho C} \left(\frac{\Delta^2 T}{\Delta x^2} + \frac{\Delta^2 T}{\Delta y^2} \right) \]

\[\Delta T_{i,j} = \left(\frac{k}{\rho C} \right) \left(\frac{T_{i-1,j} - 2T_{i,j} + T_{i+1,j}}{(\Delta x)^2} + \frac{T_{i,j-1} - 2T_{i,j} + T_{i,j+1}}{(\Delta y)^2} \right) \Delta t \]
2D Domain (Data) Decomposition

In addition to the issues of size of the compute block, you also have issues of direction.
Direction Issue: Decomposition Order Matters (think cache)

float Array[A][B];

```
0 0
0 1
0 2
0 3
0 ...
0 B−1
1 0
1 1
1 2
1 3
1 ...
1 B−1
```

In 2D problems, this is often (but not always) thought of as:

float Array[NY][NX];

```
A−1 0
A−1 1
A−1 2
A−1 3
A−1 ...
A−1 B−1
```
2D Compute-to-Communicate Ratio

Intracore computing

Intercore communication

Compute : Communicate ratio = $N^2 : 4N = N : 4$

where N is the dimension of compute nodes per core

The 2D Compute : Communicate ratio is sometimes referred to as *Area-to-Perimeter*
3D Heat Transfer Equation

\[\rho C \frac{\partial T}{\partial t} = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) \]

\[\Delta T_{i,j,k} = \left(\frac{k}{\rho C} \right) \left(\frac{T_{i-1,j,k} - 2T_{i,j,k} + T_{i+1,j,k}}{(\Delta x)^2} + \frac{T_{i,j-1,k} - 2T_{i,j,k} + T_{i,j+1,k}}{(\Delta y)^2} + \frac{T_{i,j,k-1} - 2T_{i,j,k} + T_{i,j,k+1}}{(\Delta z)^2} \right) \Delta t \]

\[\frac{\Delta T}{\Delta t} = \frac{k}{\rho C} \left(\frac{\Delta^2 T}{\Delta x^2} + \frac{\Delta^2 T}{\Delta y^2} + \frac{\Delta^2 T}{\Delta z^2} \right) \]
3D Domain (Data) Decomposition

3D Block, *, *

3D *, Block, *

3D **, Block

3D Block, Block, Block
float Array[A][B][C];

In 3D problems, this is often (but not always) thought of as:

float Array[NZ][NY][NX];
3D Compute-to-Communicate Ratio

Compute : Communicate ratio = \(N^3 : 6N^2 = N : 6 \)

where \(N \) is the dimension of compute nodes per core

In 3D the Compute : Communicate ratio is sometimes referred to as \textit{Volume-to-Surface}