What is *rabbit*?

rabbit.engr.oregonstate.edu

- PCIe Bus
- 2 E5-2630 Xeon Processors
 - 16 Cores total
 - 64 GB of memory
 - 2 TB of disk

NVIDIA Titan Black

- PCIe Bus
- 15 SMs
- 2880 CUDA cores
- 6 GB of memory
- OpenCL support
- CUDA support
What is *rabbit*?

<table>
<thead>
<tr>
<th>rabbit 151% lscpu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture:</td>
</tr>
<tr>
<td>CPU op-mode(s):</td>
</tr>
<tr>
<td>Byte Order:</td>
</tr>
<tr>
<td>CPU(s):</td>
</tr>
<tr>
<td>On-line CPU(s) list:</td>
</tr>
<tr>
<td>Thread(s) per core:</td>
</tr>
<tr>
<td>Core(s) per socket:</td>
</tr>
<tr>
<td>Socket(s):</td>
</tr>
<tr>
<td>NUMA node(s):</td>
</tr>
<tr>
<td>Vendor ID:</td>
</tr>
<tr>
<td>CPU family:</td>
</tr>
<tr>
<td>Model:</td>
</tr>
<tr>
<td>Stepping:</td>
</tr>
<tr>
<td>CPU MHz:</td>
</tr>
<tr>
<td>BogoMIPS:</td>
</tr>
<tr>
<td>Virtualization:</td>
</tr>
<tr>
<td>L1d cache:</td>
</tr>
<tr>
<td>L1i cache:</td>
</tr>
<tr>
<td>L2 cache:</td>
</tr>
<tr>
<td>L3 cache:</td>
</tr>
<tr>
<td>NUMA node0 CPU(s):</td>
</tr>
<tr>
<td>NUMA node1 CPU(s):</td>
</tr>
</tbody>
</table>
What is *rabbit*?

rabbit lives in a rack in our server room in the Kelley Engineering Center:
What is *rabbit*?
What is *rabbit*?
Getting to *rabbit* and setting up your account

Lowercase letter ‘L’

To login to *rabbit*:

```
ssh rabbit.engr.oregonstate.edu -l yourengrusername
```

Put this in your *rabbit* account’s `.cshrc`:

```
setenv INTEL_LICENSE_FILE 28518@linlic.engr.oregonstate.edu
setenv ICCPATH /nfs/guille/a2/rh80apps/intel/studio.2013-sp1/composer_xe_2015/bin/
set path=( $path $ICCPATH )
source /nfs/guille/a2/rh80apps/intel/studio.2013-sp1/bin/iccvars.csh intel64

setenv CUDA_PATH /usr/local/apps/cuda/cuda-9.2
setenv LD_LIBRARY_PATH $CUDA_PATH/lib64:$LD_LIBRARY_PATH
set path = ( $path $CUDA_PATH/bin )
```

Then activate these values like this:

```
source .cshrc
```

(These will be activated automatically the next time you login.)
Compiling and running C/C++ on *rabbit*

```
icpc  -o try try.cpp  -lm -openmp -align -qopt-report=3 -qopt-report-phase=vec
or

g++  -o try try.cpp  -lm -fopenmp
```
Compiling for OpenCL

printinfo: printinfo.cpp
icpc -o printinfo printinfo.cpp /usr/lib64/libOpenCL.so -lm -openmp
arrayMul: arrayMul.cu
nvcc -o arrayMul arrayMul.cu
The *printinfo* Program Output

Number of Platforms = 1
Platform #0:
 Name = 'NVIDIA CUDA'
 Vendor = 'NVIDIA Corporation'
 Version = 'OpenCL 1.1 CUDA 7.0.18'
 Profile = 'FULL_PROFILE'
Device #0:
 Type = 0x0004 = CL_DEVICE_TYPE_GPU
 Device Vendor ID = 0x10de (NVIDIA)
 Device Maximum Compute Units = 15
 Device Maximum Work Item Dimensions = 3
 Device Maximum Work Item Sizes = 1024 x 1024 x 64
 Device Maximum Work Group Size = 1024
 Device Maximum Clock Frequency = 1071 MHz

Device Extensions:
 cl_khr_byte_addressable_store
 cl_khr_icd
 cl_khr_gl_sharing
 cl_nv_compiler_options
 cl_nv_device_attribute_query
 cl_nv pragma_unroll
 cl_nv_copy_opts
 cl_khr_global_int32_base_atomics
 cl_khr_global_int32_extended_atomics
 cl_khr_local_int32_base_atomics
 cl_khr_local_int32_extended_atomics
 cl_khr_fp64

15*192 = 2880 CUDA cores!
Reservation System – Please use It!!

https://secure.engr.oregonstate.edu/engr/resources/ bailey