What is rabbit?

rabbit 151\% lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 63
Stepping: 2
CPU MHz: 2399.982
BogoMIPS: 4799.30
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 20480K
NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30
NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31

What is rabbit?
rabbit lives in a rack in our server room in the Kelley Engineering Center:
What is rabbit?

Getting to rabbit and setting up your account

To login to rabbit:
```
ssh rabbit.engr.oregonstate.edu -l yourengrusername
```

Put this in your rabbit account's .cshrc:
```
setenv INTEL_LICENSE_FILE 2859@linlic.engr.oregonstate.edu
setenv ICPATH /nfs/guille/a2/rh80apps/intel_studio.2013-sp1/composer_xe_2015/bin/
set path=( $path $ICCPATH )
source /nfs/guille/a2/rh80apps/intel_studio.2013-sp1/bin/iccvars.csh intel64
```

Then activate these values like this:
```
source .cshrc
```

(These will be activated automatically the next time you login.)

Compiling and running C/C++ on rabbit

```
icpc -o try try.cpp -lm -openmp -align -qopt-report=3 -qopt-report-phase=vec
```

or

```
g++ -o try try.cpp -lm -fopenmp
```
Compiling for OpenCL

```
printinfo: printinfo.cpp
icpc -o printinfo printinfo.cpp /usr/lib64/libOpenCL.so -lm -openmp
```

Compiling for CUDA

```
printinfo: printinfo.cpp
icpc -o printinfo printinfo.cpp /usr/lib64/libOpenCL.so -lm -openmp
```

The printinfo Program Output

```
Number of Platforms = 1
Platform #0:
    Name = 'NVIDIA CUDA'
    Vendor = 'NVIDIA Corporation'
    Version = 'OpenCL 1.1 CUDA 7.0.18'
    Profile = 'FULL_PROFILE'
    Device #0:  
        Type = 0x0004 = CL_DEVICE_TYPE_GPU 
        Device Vendor ID = 0x10de (NVIDIA) 
        Device Maximum Compute Units = 15 
        Device Maximum Work Item Dimensions = 3 
        Device Maximum Work Item Sizes = 1024 x 1024 x 64 
        Device Maximum Work Group Size = 1024 
        Device Maximum Clock Frequency = 1071 MHz 
        Device Extensions: 
            cl_khr_byte_addressable_store 
            cl_khr_icd 
            cl_khr_gl_sharing 
            cl_nv_compiler_options 
            cl_nv_device_attribute_query 
            cl_nv pragma unroll 
            cl_nv_copy_opts 
            cl_khr_global_int32_base_atomics 
            cl_khr_global_int32_extended_atomics 
            cl_khr_local_int32_base_atomics 
            cl_khr_local_int32_extended_atomics 
            cl_khr_fp80 

15*192 = 2880 CUDA cores!
```

Reservation System – Please use It!!

https://secure. engr .oregonstate .edu/ engr/resources/bailey