Antialiasing and Multisampling

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
The Display We Want

Too often, the Display We Get
“Aliasing” is a signal-processing term for “under-sampled compared with the frequencies in the signal”.

What the signal really is: what we want

What we think the signal is: too often, what we get

Sampling Interval

Sampled Points
Aliasing
The Nyquist Criterion

“The Nyquist [sampling] rate is twice the maximum component frequency of the function [i.e., signal] being sampled.” -- WikiPedia
MultiSampling

Multisampling is a computer graphics technique to improve the quality of your output image by looking inside every pixel to see what the rendering is doing there.

There are two approaches to this:

1. **Supersampling**: Pick some number of unique sub-pixels within a pixel, render the image at each of these sub-pixels (including depth and stencil tests), then average them together.

2. **Multisampling**: Perform a single color render for the one pixel. Then, pick some number of unique sub-pixels within that pixel and perform depth and stencil tests there. Assign the single color to all the sub-pixels that made it through the depth and stencil tests.
Vulkan Distribution of Sampling Points within a Pixel
Vulkan Distribution of Sampling Points within a Pixel

<table>
<thead>
<tr>
<th>VK_SAMPLE_COUNT_2_BIT</th>
<th>VK_SAMPLE_COUNT_4_BIT</th>
<th>VK_SAMPLE_COUNT_8_BIT</th>
<th>VK_SAMPLE_COUNT_16_BIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.25, 0.25)</td>
<td>(0.375, 0.125)</td>
<td>(0.5625, 0.3125)</td>
<td>(0.5625, 0.5625)</td>
</tr>
<tr>
<td>(0.75, 0.75)</td>
<td>(0.4375, 0.6875)</td>
<td>(0.3125, 0.625)</td>
<td>(0.4375, 0.3125)</td>
</tr>
<tr>
<td></td>
<td>(0.875, 0.375)</td>
<td>(0.75, 0.4375)</td>
<td>(0.3125, 0.1875)</td>
</tr>
<tr>
<td></td>
<td>(0.125, 0.625)</td>
<td>(0.1875, 0.8125)</td>
<td>(0.625, 0.8125)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.375, 0.875)</td>
<td>(0.25, 0.125)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0, 0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.625, 0.875)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.9375, 0.0625)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.9375, 0.25)</td>
</tr>
</tbody>
</table>
Consider Two Triangles Whose Edges Pass Through the Same Pixel
Supersampling

Final Pixel Color = \(\sum_{i=1}^{8} \frac{\text{Color sample from subpixel}_i}{8} \)

Fragment Shader calls = 8
Multisampling

\[
\text{Final Pixel Color} = \frac{3 \times \text{One color sample from A} + 5 \times \text{One color sample from B}}{8}
\]

Fragment Shader calls = 2
Setting up the Image

```cpp
VkPipelineMultisampleStateCreateInfo vpmsci;
vpmsci.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
vpmsci.pNext = nullptr;
vpmsci.flags = 0;
vpmsci.rasterizationSamples = VK_SAMPLE_COUNT_8_BIT;
vpmsci.sampleShadingEnable = VK_TRUE;
vpmsci.minSampleShading = 0.5f;
vpmsci.pSampleMask = (VkSampleMask *)nullptr;
vpmsci.alphaToCoverageEnable = VK_FALSE;
vpmsci.alphaToOneEnable = VK_FALSE;

VkGraphicsPipelineCreateInfo vgpci;
vgpci.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
vgpci.pNext = nullptr;

result = vkCreateGraphicsPipelines(LogicalDevice, VK_NULL_HANDLE, 1, IN &vgpci,
PALLOCATOR, OUT pGraphicsPipeline);
```

How dense is the sampling

VK_TRUE means to allow some sort of multisampling to take place
Setting up the Image

```cpp
VkPipelineMultisampleStateCreateInfo vpmsci;

... vpmsci.minSampleShading = 0.5;

...
```

At least this fraction of samples will get their own fragment shader calls (as long as they pass the depth and stencil tests).

- 0. produces simple multisampling
- (0., 1.) produces partial supersampling
- 1. Produces complete supersampling
Setting up the Image

```c
VkAttachmentDescription vad[2];
vad[0].format = VK_FORMAT_B8G8R8A8_SRGB;
vad[0].samples = VK_SAMPLE_COUNT_8_BIT;
vad[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
vad[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
vad[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
vad[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
vad[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
vad[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
vad[0].flags = 0;
vad[1].format = VK_FORMAT_D32_SFLOAT_S8_UINT;
vad[1].samples = VK_SAMPLE_COUNT_8_BIT;
vad[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
vad[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
vad[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
vad[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
vad[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
vad[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
vad[1].flags = 0;

VkAttachmentReference colorReference;
  colorReference.attachment = 0;
  colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

VkAttachmentReference depthReference;
  depthReference.attachment = 1;
  depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
```
VkSubpassDescription vsd;
vsd.flags = 0;
vsd.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
vsd.inputAttachmentCount = 0;
vsd.pInputAttachments = (VkAttachmentReference *)nullptr;
vsd.colorAttachmentCount = 1;
vsd.pColorAttachments = &colorReference;
vsd.pResolveAttachments = (VkAttachmentReference *)nullptr;
vsd.pDepthStencilAttachment = &depthReference;
vsd.preserveAttachmentCount = 0;
vsd.pPreserveAttachments = (uint32_t *)nullptr;

VkRenderPassCreateInfo vrpci;
vrpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
vrpci.pNext = nullptr;
vrpci.flags = 0;
vrpci.attachmentCount = 2; // color and depth/stencil
vrpci.pAttachments = vad;
vrpci.subpassCount = 1;
vrpci.pSubpasses = IN &vsd;
vrpci.dependencyCount = 0;
vrpci.pDependencies = (VkSubpassDependency *)nullptr;

result = vkCreateRenderPass(LogicalDevice, IN &vrpci, PALLOCATOR, OUT &RenderPass);
Resolving the Image:
Converting the Multisampled Image to a VK_SAMPLE_COUNT_1_BIT image

```c
VIOffset3D
    vo3.x = 0;
    vo3.y = 0;
    vo3.z = 0;

VkExtent3D
    ve3.width = Width;
    ve3.height = Height;
    ve3.depth = 1;

VkImageSubresourceLayers
    visl.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    visl.mipLevel = 0;
    visl.baseArrayLayer = 0;
    visl.layerCount = 1;

VkImageResolve
    vir.srcSubresource = visl;
    vir.srcOffset = vo3;
    vir.dstSubresource = visl;
    vir.dstOffset = vo3;
    vir.extent = ve3;

vkCmdResolveImage( cmdBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, 1, &vir );
```