
12/31/2022

1

mjb – December 31, 2022
Computer Graphics

1

MultiSampling.pptx

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

Antialiasing and Multisampling

mjb – December 31, 2022
Computer Graphics

2
Aliasing

The Display We Want Too often,
the Display We Get

mjb – December 31, 2022
Computer Graphics

3
Aliasing

“Aliasing” is a signal-processing term for “under-sampled
compared with the frequencies in the signal”.

What the signal really is:
what we want

Sampling Interval

Sampled Points

What we think the signal is:
too often, what we get

mjb – December 31, 2022
Computer Graphics

4
Aliasing

mjb – December 31, 2022
Computer Graphics

5
The Nyquist Criterion

“The Nyquist [sampling] rate is twice the maximum component frequency of
the function [i.e., signal] being sampled.” -- WikiPedia

mjb – December 31, 2022
Computer Graphics

6MultiSampling

Oversampling is a computer graphics technique to improve the quality of your output image by
looking inside every pixel to see what the rendering is doing there.

There are two approaches to this:

1. Supersampling: Pick some number of sub-pixels within that pixel that pass the depth and
stencil tests. Render the image at each of these sub-pixels..

2. Multisampling: Pick some number of sub-pixels within that pixel that pass the depth and
stencil tests. If any of them pass, then perform a single color render for the one pixel and
assign that single color to all the sub-pixels that passed the depth and stencil tests.

One pixel

The final step will be to average those sub-pixels’ colors to produce one
final color for this whole pixel. This is called resolving the pixel.

Sub-pixels

12/31/2022

2

mjb – December 31, 2022
Computer Graphics

7Vulkan Specification Distribution of Sampling Points within a Pixel

mjb – December 31, 2022
Computer Graphics

8Vulkan Specification Distribution of Sampling Points within a Pixel

mjb – December 31, 2022
Computer Graphics

9Consider Two Triangles That Pass Through the Same Pixel

Let’s assume (for now) that the two
triangles don’t overlap – that is, they
look this way because they butt up
against each other.

mjb – December 31, 2022
Computer Graphics

10Supersampling

B

2

𝑭𝒊𝒏𝒂𝒍 𝑷𝒊𝒙𝒆𝒍 𝑪𝒐𝒍𝒐𝒓 =
∑ 𝑪𝒐𝒍𝒐𝒓 𝒔𝒂𝒎𝒑𝒍𝒆 𝒇𝒓𝒐𝒎 𝒔𝒖𝒃𝒑𝒊𝒙𝒆𝒍𝒊

𝟖
𝒊ୀ𝟏

𝟖

Fragment Shader calls = 8

1

4

3

6

5

7

8

mjb – December 31, 2022
Computer Graphics

11Multisampling

B

Fragment Shader calls = 2

2

1

4

3

6

5

7

8

A

𝑭𝒊𝒏𝒂𝒍 𝑷𝒊𝒙𝒆𝒍 𝑪𝒐𝒍𝒐𝒓 =
𝟑 ∗ 𝑶𝒏𝒆 𝒄𝒐𝒍𝒐𝒓 𝒔𝒂𝒎𝒑𝒍𝒆 𝒇𝒓𝒐𝒎 𝑨 + 𝟓 ∗ 𝑶𝒏𝒆 𝒄𝒐𝒍𝒐𝒓 𝒔𝒂𝒎𝒑𝒍𝒆 𝒇𝒓𝒐𝒎 𝑩

𝟖

mjb – December 31, 2022
Computer Graphics

12

Multisampling Supersampling

Blue fragment
shader calls

1 5

Red fragment
shader calls

1 3

Let’s assume (for now) that the two triangles don’t overlap – that is, they look this
way because they butt up against each other.

Consider Two Triangles Who Pass Through the Same Pixel

Number of Fragment Shader Calls

12/31/2022

3

mjb – December 31, 2022
Computer Graphics

13

Q: What if the blue triangle
completely filled the pixel when it
was drawn, and then the red
one, which is closer to the viewer
than the blue one, came along
and partially filled the pixel?

A: The ideas are all still the same, but the blue one had to deal with
8 sub-pixels (instead of 5 like before). But, the red triangle came
along and obsoleted 3 of those blue sub-pixels. Note that the
“resolved” image will still turn out the same as before.

Consider Two Triangles Who Pass Through the Same Pixel

mjb – December 31, 2022
Computer Graphics

14

Multisampling Supersampling

Blue fragment
shader calls

1 8

Red fragment
shader calls

1 3

What if the blue triangle completely filled the pixel when it was drawn, and then the
red one, which is closer to the viewer than the blue one, came along and partially
filled the pixel?

Consider Two Triangles Who Pass Through the Same Pixel

Number of Fragment Shader Calls

mjb – December 31, 2022
Computer Graphics

15

VkPipelineMultisampleStateCreateInfo vpmsci;
vpmsci.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
vpmsci.pNext = nullptr;
vpmsci.flags = 0;
vpmsci.rasterizationSamples = VK_SAMPLE_COUNT_8_BIT;
vpmsci.sampleShadingEnable = VK_TRUE;
vpmsci.minSampleShading = 0.5f;
vpmsci.pSampleMask = (VkSampleMask *)nullptr;
vpmsci.alphaToCoverageEnable = VK_FALSE;
vpmsci.alphaToOneEnable = VK_FALSE;

VkGraphicsPipelineCreateInfo vgpci;
vgpci.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
vgpci.pNext = nullptr;

. . .
vgpci.pMultisampleState = &vpmsci;

result = vkCreateGraphicsPipelines(LogicalDevice, VK_NULL_HANDLE, 1, IN &vgpci,\
PALLOCATOR, OUT pGraphicsPipeline);

Setting up the Image

VK_TRUE means to allow some
sort of multisampling to take place

How dense is
the sampling

mjb – December 31, 2022
Computer Graphics

16

VkPipelineMultisampleStateCreateInfo vpmsci;
. . .

vpmsci.minSampleShading = 0.5;

. . .

Setting up the Image

At least this fraction of samples will get their own fragment
shader calls (as long as they pass the depth and stencil tests).

0. produces simple multisampling

(0. - 1.) produces partial supersampling

1. Produces complete supersampling

mjb – December 31, 2022
Computer Graphics

17

VkAttachmentDescription vad[2];
vad[0].format = VK_FORMAT_B8G8R8A8_SRGB;
vad[0].samples = VK_SAMPLE_COUNT_8_BIT;
vad[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
vad[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
vad[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
vad[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
vad[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
vad[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
vad[0].flags = 0;

vad[1].format = VK_FORMAT_D32_SFLOAT_S8_UINT;
vad[1].samples = VK_SAMPLE_COUNT_8_BIT;
vad[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
vad[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
vad[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
vad[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
vad[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
vad[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
vad[1].flags = 0;

VkAttachmentReference colorReference;
colorReference.attachment = 0;
colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

VkAttachmentReference depthReference;
depthReference.attachment = 1;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;

Setting up the Image

mjb – December 31, 2022
Computer Graphics

18

VkSubpassDescription vsd;
vsd.flags = 0;
vsd.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
vsd.inputAttachmentCount = 0;
vsd.pInputAttachments = (VkAttachmentReference *)nullptr;
vsd.colorAttachmentCount = 1;
vsd.pColorAttachments = &colorReference;
vsd.pResolveAttachments = (VkAttachmentReference *)nullptr;
vsd.pDepthStencilAttachment = &depthReference;
vsd.preserveAttachmentCount = 0;
vsd.pPreserveAttachments = (uint32_t *)nullptr;

VkRenderPassCreateInfo vrpci;
vrpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
vrpci.pNext = nullptr;
vrpci.flags = 0;
vrpci.attachmentCount = 2; // color and depth/stencil
vrpci.pAttachments = vad;
vrpci.subpassCount = 1;
vrpci.pSubpasses = IN &vsd;
vrpci.dependencyCount = 0;
vrpci.pDependencies = (VkSubpassDependency *)nullptr;

result = vkCreateRenderPass(LogicalDevice, IN &vrpci, PALLOCATOR, OUT &RenderPass);

Setting up the Image

12/31/2022

4

mjb – December 31, 2022
Computer Graphics

19

VlOffset3D vo3;
vo3.x = 0;
vo3.y = 0;
vo3.z = 0;

VkExtent3D ve3;
ve3.width = Width;
ve3.height = Height;
ve3.depth = 1;

VkImageSubresourceLayers visl;
visl.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
visl.mipLevel = 0;
visl.baseArrayLayer = 0;
visl.layerCount = 1;

VkImageResolve vir;
vir.srcSubresource = visl;
vir.srcOffset = vo3;
vir.dstSubresource = visl;
vir.dstOffset = vo3;
vir.extent = ve3;

vkCmdResolveImage(cmdBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, 1, IN &vir);

Resolving the Image:
Converting the Multisampled Image to a VK_SAMPLE_COUNT_1_BIT image

For the *ImageLayout, use VK_IMAGE_LAYOUT_GENERAL

