Queues and Command Buffers

Application

Vulkan: Overall Block Diagram

Instance

Physical Device

Logical Device

Queue

Instance

Physical Device

Logical Device

Queue

Command Buffer

Command Buffer

Command Buffer
Vulkan: a More Typical (and Simplified) Block Diagram

Application

Instance

Physical Device

Logical Device

Queue

Command Buffer

Command Buffer

Command Buffer

Vulkan Queues and Command Buffers

- Graphics commands are recorded in command buffers, e.g., `vkCmdDoSomething(cmdBuffer, ...);`
- You can have as many simultaneous Command Buffers as you want
- Each command buffer can be filled from a different thread
- Command Buffers record our commands, but no work takes place until a Command Buffer is submitted to a Queue
- We don’t create Queues – the Logical Device has them already
- Each Queue belongs to a Queue Family
- We don’t create Queue Families – the Physical Device already has them
Querying what Queue Families are Available

```c
uint32_t count;
vkGetPhysicalDeviceQueueFamilyProperties( IN PhysicalDevice, &count, OUT (VkQueueFamilyProperties *)nullptr );
VkQueueFamilyProperties *vqfp = new VkQueueFamilyProperties[ count ];
vkGetPhysicalDeviceQueueFamilyProperties( PhysicalDevice, &count, OUT &vqfp );
for( unsigned int i = 0; i < count; i++ )
{
    fprintf( FpDebug, "\t%d: Queue Family Count = %2d ; Graphics Compute Transfer\n", i, vqfp[i].queueCount );
    if( ( vqfp[i].queueFlags & VK_QUEUE_GRAPHICS_BIT ) != 0 )        fprintf( FpDebug, " Graphics\n" );
    if( ( vqfp[i].queueFlags & VK_QUEUE_COMPUTE_BIT  ) != 0 )        fprintf( FpDebug, " Compute\n" );
    if( ( vqfp[i].queueFlags & VK_QUEUE_TRANSFER_BIT ) != 0 )        fprintf( FpDebug, " Transfer\n" );
    fprintf(FpDebug, "\n");
}
```

Found 3 Queue Families:
0: Queue Family Count = 16 ; Graphics Compute Transfer
1: Queue Family Count = 1 ; Transfer
2: Queue Family Count = 8 ; Compute

Similarly, we Can Write a Function that Finds the Proper Queue Family

```c
int FindQueueFamilyThatDoesGraphics( )
{
    uint32_t count = -1;
vkGetPhysicalDeviceQueueFamilyProperties( IN PhysicalDevice, &count, OUT (VkQueueFamilyProperties *)nullptr );
VkQueueFamilyProperties *vqfp = new VkQueueFamilyProperties[ count ];
vkGetPhysicalDeviceQueueFamilyProperties( IN PhysicalDevice, &count, OUT vqfp );
for( unsigned int i = 0; i < count; i++ )
{
    if( ( vqfp[i].queueFlags & VK_QUEUE_GRAPHICS_BIT ) != 0 )
        return i;
}
return -1;
}
```

"These are not the Queue Families you're looking for."
float queuePriorities[] = {
 1.0f // one entry per queueCount
};

VkDeviceQueueCreateInfo vdqci[1];
vdqci.sType = VK_STRUCTURE_TYPE_QUEUE_CREATE_INFO;
vdqci.pNext = nullptr;
vdqci.flags = 0;
vdqci.queueFamilyIndex = FindQueueFamilyThatDoesGraphics();
vdqci.queueCount = 1;
vdqci.queuePriorities = (float *) queuePriorities;

VkDeviceCreateInfo vdci;
vdc.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
vdc.pNext = nullptr;
vdc.flags = 0;
vdc.queueCreateInfoCount = 1; // # of device queues wanted
vdci.pQueueCreateInfos = &vdqci[0]; // array of VkDeviceQueueCreateInfo's
vdcc.enabledLayerCount = sizeof(myDeviceLayers) / sizeof(char *);
vdc.ppEnabledLayerNames = myDeviceLayers;
vdc.enabledExtensionCount = sizeof(myDeviceExtensions) / sizeof(char *);
vdc.ppEnabledExtensionNames = myDeviceExtensions;
vdc.pEnabledFeatures = IN &PhysicalDeviceFeatures; // already created

result = vkCreateLogicalDevice(PhysicalDevice, IN &vdci, PALLOCATOR, OUT &LogicalDevice);

VkQueue Queue;
uint32_t queueFamilyIndex = FindQueueFamilyThatDoesGraphics();
uint32_t queueIndex = 0;
result = vkGetDeviceQueue(LogicalDevice, queueFamilyIndex, queueIndex, OUT &Queue);

Creating a Logical Device Queue Needs to Know Queue Family Information

VkResult Init06CommandPool() {
 VkResult result;
 VkCommandPoolCreateInfo vcpci;
 vcpci.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
 vcpci.pNext = nullptr;
 vcpici.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT | VK_COMMAND_POOL_CREATE_TRANSIENT_BIT;
#if defined CHOICES
 VK_COMMAND_POOL_CREATE_TRANSIENT_BIT
 VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT
#endif
 vcpici.queueFamilyIndex = FindQueueFamilyThatDoesGraphics();
 result = vkCreateCommandPool(LogicalDevice, IN &vcpici, PALLOCATOR, OUT &CommandPool);
 return result;
}
Creating the Command Buffers

```cpp
VkResult Init06CommandBuffers( )
{
    VkResult result;
    // allocate 2 command buffers for the double-buffered rendering:
    
    VkCommandBufferAllocateInfo vcbai;
    vcbai.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
    vcbai.pNext = nullptr;
    vcbai.commandPool = CommandPool;
    vcbai.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
    vcbai.commandBufferCount = 2;           // 2, because of double-buffering
    result = vkAllocateCommandBuffers( LogicalDevice, IN &vcbai, OUT &CommandBuffers[0] );

    // allocate 1 command buffer for the transferring pixels from a staging buffer to a texture buffer:
    
    VkCommandBufferAllocateInfo vcbai;
    vcbai.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
    vcbai.pNext = nullptr;
    vcbai.commandPool = CommandPool;
    vcbai.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
    vcbai.commandBufferCount = 1;
    result = vkAllocateCommandBuffers( LogicalDevice, IN &vcbai, OUT &TextureCommandBuffer );
    return result;
}
```

Beginning a Command Buffer

```cpp
VkSemaphoreCreateInfo vsci;
    vsci.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
    vsci.pNext = nullptr;
    vsci.flags = 0;
VkSemaphore imageReadySemaphore;
    result = vkCreateSemaphore( LogicalDevice, IN &vsci, PALLOCATOR, OUT &imageReadySemaphore );
    uint32_t nextImageIndex;
    vkAcquireNextImageKHR( LogicalDevice, IN SwapChain, IN UINT64_MAX, 
        IN imageReadySemaphore, IN VK_NULL_HANDLE, OUT &nextImageIndex );

VkCommandBufferBeginInfo vcbbi;
    vcbbi.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
    vcbbi.pNext = nullptr;
    vcbbi.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
    vcbbi.pInheritanceInfo = (VkCommandBufferInheritanceInfo *)nullptr;
    result = vkBeginCommandBuffer( CommandBuffers[nextImageIndex], IN &vcbbi );
    . . .
    vkEndCommandBuffer( CommandBuffers[nextImageIndex] );
```
Beginning a Command Buffer

- `vkBeginCommandBuffer()`
- `VkCommandBufferAllocateInfo`
- `vkCreateCommandBufferPool()`
These are the Commands that could be entered into the Command Buffer, II

vkCmdFillBuffer(commandBuffer, dstBuffer, dstOffset, size, data);
vkCmdNextSubpass(commandBuffer, contents);
vkCmdPipelineBarrier(commandBuffer, srcStageMask, dstStageMask, dependencyFlags, memoryBarrierCount, memoryBarriers);
vkCmdProcessCommandsNVX(commandBuffer, pProcessCommandsInfo);
vkCmdPushConstants(commandBuffer, pStageFlags, offset, size, pValues);
vkCmdPushDescriptorSetKHR(commandBuffer, pipelineBindPoint, layout, set, descriptorWriteCount, pDescriptorWrites);
vkCmdResetEvent(commandBuffer, stageMask);
vkCmdResolveImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions);
vkCmdSetBlendConstants(commandBuffer, blendConstants[4]);
vkCmdSetDepthBias(commandBuffer, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
vkCmdSetDepthBounds(commandBuffer, minDepthBounds, maxDepthBounds);
vkCmdSetDeviceMaskKHX(commandBuffer, deviceMask);
vkCmdSetDiscardRectangleEXT(commandBuffer, firstDiscardRectangle, discardRectangleCount, pDiscardRectangles);
vkCmdSetEvent(commandBuffer, stageMask);
vkCmdSetLineWidth(commandBuffer, lineWidth);
vkCmdSetScissor(commandBuffer, firstScissor, scissorCount, pScissors);
vkCmdClearColorImageKHR(commandBuffer, framebuffer, colorAttachment, colorMask, clearColor);
vkCmdClearDepthStencilImageKHR(commandBuffer, framebuffer, depthAttachment, depthClearValue, depthWriteMask, stencilAttachment, stencilClearValue, stencilWriteMask);

These are the Commands that could be entered into the Command Buffer, II

VkResult
RenderScene() {
 VkResult result;
 VkSemaphoreCreateInfo vsci;
 vsci.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
 vsci.pNext = nullptr;
 vsci.flags = 0;
 VkSemaphore imageReadySemaphore;
 result = vkCreateSemaphore(LogicalDevice, IN &vsci, PALLOCATOR, OUT &imageReadySemaphore);
 uint32_t nextImageIndex;
 vkAcquireNextImageKHR(LogicalDevice, IN SwapChain, IN UINT64_MAX, IN VK_NULL_HANDLE, IN VK_NULL_HANDLE, OUT &nextImageIndex);
 VkCommandBufferBeginInfo vcbbi;
 vcbbi.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_CREATE_INFO;
 vcbbi.pNext = nullptr;
 vcbbi.flags = 0;
 VkCommandBufferBeginInfoKHR vcbb;
 vcbb.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO_KHR;
 vcbb.pNext = nullptr;
 vcbb.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
 result = vkBeginCommandBuffer(commandBuffers[nextImageIndex], IN &vcbbi);
VkClearColorValue vccv;
vccv<float32>[0] = 0.0;
vccv<float32>[1] = 0.0;
vccv<float32>[2] = 0.0;
vccv<float32>[3] = 1.0;

VkClearDepthStencilValue vcdsv;
vcdsv.depth = 1.f;
vcdsv.stencil = 0;

VkClearValue vcv[2];
vcv[0].color = vccv;
vcv[1].depthStencil = vcdsv;

VkOffset2D o2d = {0, 0};
VkExtent2D e2d = {Width, Height};
VkRect2D r2d = {o2d, e2d};

VkRenderPassBeginInfo vrpbi;
vrpbi.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
vrpbi.pNext = nullptr;
vrpbi.renderPass = RenderPass;
vrpbi.framebuffer = Framebuffers[nextImageIndex];
vrpbi.renderArea = r2d;
vrpbi.clearValueCount = 2;
vrpbi.pClearValues = vcv; // used for VK_ATTACHMENT_LOAD_OP_CLEAR

vkCmdBeginRenderPass(CommandBuffers[nextImageIndex], IN &vrpbi, IN VK_SUBPASS_CONTENTS_INLINE);

VkViewport viewport = {
 0., // x
 0., // y
 (float)Width, // x
 (float)Height, // y
 0., // minDepth
 1. // maxDepth
};

vkCmdSetViewport(CommandBuffers[nextImageIndex], 0, 1, IN &viewport); // 0=firstViewport, 1=viewportCount

VkRect2D scissor = {
 0,
 0,
 Width,
 Height
};

vkCmdSetScissor(CommandBuffers[nextImageIndex], 0, 1, IN &scissor);

vkCmdBindDescriptorSets(CommandBuffers[nextImageIndex], VK_PIPELINE_BIND_POINT_GRAPHICS,
 GraphicsPipelineLayout, 0, 4, DescriptorSets, 0, (uint32_t*)nullptr);

VkBuffer buffers[1] = {MyVertexDataBuffer.buffer};
VkDeviceSize offsets[1] = {0};

vkCmdBindVertexBuffers(CommandBuffers[nextImageIndex], 0, 1, buffers, offsets); // 0, 1 = firstBinding, bindingCount

const uint32_t vertexCount = sizeof(VertexData) / sizeof(VertexData[0]);
const uint32_t instanceCount = 1;
const uint32_t firstVertex = 0;
const uint32_t firstInstance = 0;

vkCmdDraw(CommandBuffers[nextImageIndex], vertexCount, instanceCount, firstVertex, firstInstance);

_vkEndCommandBuffer(CommandBuffers[nextImageIndex]);

_vkEndRenderPass(CommandBuffers[nextImageIndex]);
Submitting a Command Buffer to a Queue for Execution

```c
VkSubmitInfo vsi;
vsi.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
vsi.pNext = nullptr;
vsi.commandBufferCount = 1;
vsi.pCommandBuffers = &CommandBuffer;
vsi.waitSemaphoreCount = 1;
vsi.pWaitSemaphores = imageReadySemaphore;
vsi.signalSemaphoreCount = 0;
vsi.pSignalSemaphores = (VkSemaphore *)nullptr;
vsi.pWaitDstStageMask = (VkPipelineStageFlags *)nullptr;
```

The Entire Submission / Wait / Display Process

1. **Create fence**
 - `VkFenceCreateInfo vfci;
 vfci.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
 vfci.pNext = nullptr;
 vfci.flags = 0;`
 - `VkFence renderFence;`
 - `vkCreateFence(LogicalDevice, &vfci, PALLOCATOR, OUT &renderFence);`
 - `result = VK_SUCCESS;`
2. **Get the queue**
 - `VkPipelineStageFlags waitAtBottom = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;`
 - `VkQueue presentQueue;`
 - `vkGetDeviceQueue(LogicalDevice, FindQueueFamilyThatDoesGraphics(), 0, OUT &presentQueue);`
3. **Fill in the queue information**
 - `VkSubmitInfo vsi;
 vsi.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
 vsi.pNext = nullptr;
 vsi.waitSemaphoreCount = 1;
 vsi.pWaitSemaphores = &imageReadySemaphore;
 vsi.pWaitDstStageMask = &waitAtBottom;
 vsi.commandBufferCount = 1;
 vsi.pCommandBuffers = &CommandBuffers[nextImageIndex];
 vsi.signalSemaphoreCount = 0;
 vsi.pSignalSemaphores = &SemaphoreRenderFinished;`
4. **Submit the queue**
 - `result = vkQueueSubmit(presentQueue, 1, IN &vsi, IN renderFence);`
 - `result = vkWaitForFences(LogicalDevice, 1, IN &renderFence, VK_TRUE, UINT64_MAX);`
5. **Wait for the fence**
 - `vkDestroyFence(LogicalDevice, renderFence, PALLOCATOR);`
6. **Display**
 - `VkPresentInfoKHR vpi;
 vpi.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
 vpi.pNext = nullptr;
 vpi.swapchainCount = 0;
 vpi.pSwapchains = (VkSwapchainKHR *)&SwapChain;
 vpi.imageIndex = nextImageIndex;
 vpi.pImageIndices = &nextImageIndex;
 vpi.pResults = (VkResult *)&results;`
 - `result = vkQueuePresentKHR(presentQueue, IN &vpi);`