The Swap Chain
How OpenGL Thinks of Framebuffers
How Vulkan Thinks of Framebuffers – the Swap Chain
What is a Swap Chain?

Vulkan does not use the idea of a “back buffer”. So, we need a place to render into before moving an image into place for viewing. The is called the **Swap Chain**.

In essence, the Swap Chain manages one or more image objects that form a sequence of images that can be drawn into and then given to the Surface to be presented to the user for viewing.

Swap Chains are arranged as a ring buffer

Swap Chains are tightly coupled to the window system.

After creating the Swap Chain in the first place, the process for using the Swap Chain is:

1. Ask the Swap Chain for an image
2. Render into it via the Command Buffer and a Queue
3. Return the image to the Swap Chain for presentation
4. Present the image to the viewer (copy to “front buffer”)

Oregon State University Computer Graphics
We Need to Find Out What our Display Capabilities Are

```c
VkSurfaceCapabilitiesKHR vsc;
vkGetPhysicalDeviceSurfaceCapabilitiesKHR( PhysicalDevice, Surface, OUT &vsc );
VkExtent2D surfaceRes = vsc.currentExtent;
fprintf( FpDebug, "\nvkGetPhysicalDeviceSurfaceCapabilitiesKHR:\n" );

VkBool32 supported;
result = vkGetPhysicalDeviceSurfaceSupportKHR( PhysicalDevice, FindQueueFamilyThatDoesGraphics( ), Surface, &supported );
if( supported == VK_TRUE )
    fprintf( FpDebug, "** This Surface is supported by the Graphics Queue **\n" );

uint32_t formatCount;
vkGetPhysicalDeviceSurfaceFormatsKHR( PhysicalDevice, Surface, &formatCount, (VkSurfaceFormatKHR *) nullptr );
VkSurfaceFormatKHR * surfaceFormats = new VkSurfaceFormatKHR[ formatCount ];
vkGetPhysicalDeviceSurfaceFormatsKHR( PhysicalDevice, Surface, &formatCount, surfaceFormats );
fprintf( FpDebug, "Found %d Surface Formats:\n", formatCount )

uint32_t presentModeCount;
vkGetPhysicalDeviceSurfacePresentModesKHR( PhysicalDevice, Surface, &presentModeCount, (VkPresentModeKHR *) nullptr );
VkPresentModeKHR * presentModes = new VkPresentModeKHR[ presentModeCount ];
vkGetPhysicalDeviceSurfacePresentModesKHR( PhysicalDevice, Surface, &presentModeCount, presentModes );
fprintf( FpDebug, "Found %d Present Modes:\n", presentModeCount );
```

We Need to Find Out What our Display Capabilities Are
We Need to Find Out What our Display Capabilities Are

VulkanDebug.txt output:

```
vkGetPhysicalDeviceSurfaceCapabilitiesKHR:
    minImageCount = 2 ; maxImageCount = 8
    currentExtent = 1024 x 1024
    minImageExtent = 1024 x 1024
    maxImageExtent = 1024 x 1024
    maxImageArrayLayers = 1
    supportedTransforms = 0x0001
    currentTransform = 0x0001
    supportedCompositeAlpha = 0x0001
    supportedUsageFlags = 0x009f

** This Surface is supported by the Graphics Queue **

Found 2 Surface Formats:
0:  44  0  ( VK_FORMAT_B8G8R8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR )
1:  50  0  ( VK_FORMAT_B8G8R8A8_SRGB,  VK_COLOR_SPACE_SRGB_NONLINEAR_KHR )

Found 3 Present Modes:
0:  2  ( VK_PRESENT_MODE_FIFO_KHR )
1:  3  ( VK_PRESENT_MODE_FIFO_RELAXED_KHR )
2:  1  ( VK_PRESENT_MODE_MAILBOX_KHR )
```
Creating a Swap Chain

vkGetDevicePhysicalSurfaceCapabilities()

VkSurfaceCapabilities

VkSwapchainCreateInfo

surface
imageFormat
imageColorSpace
imageExtent
imageArrayLayers
imageUsage
imageSharingMode
preTransform
compositeAlpha
presentMode
clipped

minImageCount
maxImageCount
currentExtent
minImageExtent
maxImageExtent
maxImageArrayLayers
supportedTransforms
currentTransform
supportedCompositeAlpha

vkCreateSwapchain()

vkGetSwapChainImages()

vkCreateImageView()
Creating a Swap Chain

```cpp
VkSurfaceCapabilitiesKHR vsc;
vkGetPhysicalDeviceSurfaceCapabilitiesKHR( PhysicalDevice, Surface, OUT &vsc );
VkExtent2D surfaceRes = vsc.currentExtent;

VkSwapchainCreateInfoKHR vscci;
    vscci.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
    vscci.pNext = nullptr;
    vscci.flags = 0;
    vscci.surface = Surface;
    vscci.minImageCount = 2; // double buffering
    vscci.imageFormat = VK_FORMAT_B8G8R8A8_UNORM;
    vscci.imageColorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR;
    vscci.imageExtent.width = surfaceRes.width;
    vscci.imageExtent.height = surfaceRes.height;
    vscci.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
    vscci.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
    vscci.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
    vscci.imageArrayLayers = 1;
    vscci.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
    vscci.queueFamilyIndexCount = 0;
    vscci.pQueueFamilyIndices = (const uint32_t *)nullptr;
    vscci.presentMode = VK_PRESENT_MODE_MAILBOX_KHR;
    vscci.oldSwapchain = VK_NULL_HANDLE;
    vscci.clipped = VK_TRUE;

result = vkCreateSwapchainKHR( LogicalDevice, IN &vscci, PALLOCATOR, OUT &SwapChain );
```
Creating the Swap Chain Images and Image Views

```c
uint32_t imageCount;               // # of display buffers – 2? 3?
result = vkGetSwapchainImagesKHR( LogicalDevice, IN SwapChain, OUT &imageCount, (VkImage *)nullptr);

PresentImages = new VkImage[ imageCount ];
result = vkGetSwapchainImagesKHR( LogicalDevice, SwapChain, OUT &imageCount, PresentImages );

// present views for the double-buffering:

PresentImageViews = new VkImageView[ imageCount ];

for( unsigned int i = 0; i < imageCount; i++ )
{
    VkImageViewCreateInfo vivci;
    vivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
    vivci.pNext = nullptr;
    vivci.flags = 0;
    vivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
    vivci.format = VK_FORMAT_B8G8R8A8_UNORM;
    vivci.components.r = VK_COMPONENT_SWIZZLE_R;
    vivci.components.g = VK_COMPONENT_SWIZZLE_G;
    vivci.components.b = VK_COMPONENT_SWIZZLE_B;
    vivci.components.a = VK_COMPONENT_SWIZZLE_A;
    vivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    vivci.subresourceRange.baseMipLevel = 0;
    vivci.subresourceRange.levelCount = 1;
    vivci.subresourceRange.baseArrayLayer = 0;
    vivci.subresourceRange.layerCount = 1;
    vivci.image = PresentImages[ i ];

    result = vkCreateImageView( LogicalDevice, IN &vivci, PALLOCATOR, OUT &PresentImageViews[ i ] );
}
```
Rendering into the Swap Chain, I

```c
VkSemaphoreCreateInfo vsci;
    vsci.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
    vsci.pNext = nullptr;
    vsci.flags = 0;

VkSemaphore imageReadySemaphore;
result = vkCreateSemaphore( LogicalDevice, IN &vsci, PALLOCATOR, OUT &imageReadySemaphore );

uint32_t nextImageIndex;
uint64_t timeout = UINT64_MAX;
vkAcquireNextImageKHR( LogicalDevice, IN SwapChain, IN timeout, IN imageReadySemaphore, 
    IN VK_NULL_HANDLE, OUT &nextImageIndex );
    ...

result = vkBeginCommandBuffer( CommandBuffers[ nextImageIndex ], IN &vcbbi );
    ...

vkCmdBeginRenderPass( CommandBuffers[ nextImageIndex ], IN &vrpbi, 
    IN VK_SUBPASS_CONTENTS_INLINE );

vkCmdBindPipeline( CommandBuffers[ nextImageIndex ], VK_PIPELINE_BIND_POINT_GRAPHICS, GraphicsPipeline );
    ...

vkCmdEndRenderPass( CommandBuffers[ nextImageIndex ] );
vkEndCommandBuffer( CommandBuffers[ nextImageIndex ] );
```
Rendering into the Swap Chain, II

```
VkFenceCreateInfo vfci;
    vfci.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
    vfci.pNext = nullptr;
    vfci.flags = 0;

VkFence renderFence;
    vkCreateFence( LogicalDevice, &vfci, PALLOCATOR, OUT &renderFence );

VkQueue presentQueue;
    vkGetDeviceQueue( LogicalDevice, FindQueueFamilyThatDoesGraphics( ), 0, OUT &presentQueue );

VkSubmitInfo vsi;
    vsi.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
    vsi.pNext = nullptr;
    vsi.waitSemaphoreCount = 1;
    vsi.pWaitSemaphores = &imageReadySemaphore;
    vsi.pWaitDstStageMask = &waitAtBottom;
    vsi.commandBufferCount = 1;
    vsi.pCommandBuffers = &CommandBuffers[ nextImageIndex ];
    vsi.signalSemaphoreCount = 0;
    vsi.pSignalSemaphores = &SemaphoreRenderFinished;

    result = vkQueueSubmit( presentQueue, 1, IN &vsi, IN renderFence );  // 1 = submitCount
```
Rendering into the Swap Chain, III

```c
result = vkWaitForFences( LogicalDevice, 1, IN &renderFence, VK_TRUE, UINT64_MAX );

VkPresentInfoKHR
  vpi.
  vpi.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
  vpi.pNext = nullptr;
  vpi.waitSemaphoreCount = 0;
  vpi.pWaitSemaphores = (VkSemaphore *)nullptr;
  vpi.swapchainCount = 1;
  vpi.pSwapchains = &SwapChain;
  vpi.pImageIndices = &nextImageIndex;
  vpi.pResults = (VkResult *) nullptr;

result = vkQueuePresentKHR( presentQueue, IN &vpi );
```