
12/29/2022

1

mjb – December 20, 2022
Computer Graphics

1

VertexBuffers.pptx

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

Vertex Buffers

mjb – December 20, 2022
Computer Graphics

2

Vertex Buffers are how you draw things in Vulkan. They are very much
like Vertex Buffer Objects in OpenGL, but more detail is exposed to you
(a lot more…).

But, the good news is that Vertex Buffers are really just ordinary Data
Buffers, so some of the functions will look familiar to you.

First, a quick review of computer graphics geometry . . .

What is a Vertex Buffer?

mjb – December 20, 2022
Computer Graphics

3

Where things are (e.g., coordinates)

Geometry:

How things are connected

Topology:

1

2

3

4

1

2

3

4

1

2

3

4

Geometry = changed
Topology = same (1-2-3-4-1)

Geometry = same
Topology = changed (1-2-4-3-1)

Original Object

Geometry vs. Topology

mjb – December 20, 2022
Computer Graphics

4

typedef enum VkPrimitiveTopology
{

VK_PRIMITIVE_TOPOLOGY_POINT_LIST = 0,
VK_PRIMITIVE_TOPOLOGY_LINE_LIST = 1,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP = 2,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST = 3,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP = 4,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN = 5,
VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY = 6,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY = 7,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY = 8,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY = 9,
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST = 10,

} VkPrimitiveTopology;

Vulkan Topologies

12/29/2022

2

mjb – December 20, 2022
Computer Graphics

5
Vulkan Topologies

VK_PRIMITIVE_TOPOLOGY_POINT_LIST

V0

V3

V1

V2

VK_PRIMITIVE_TOPOLOGY_LINE_LIST

V0

V3

V1

V2

VK_PRIMITIVE_TOPOLOGY_LINE_STRIP

V0

V3

V1

V2

V0

V2

V1

V3

V5

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST

V4

V7

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP

V0

V2

V1

V3

V6

V5

V4

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN

V0

V1

V2

V3

V4 V5

V0

mjb – December 20, 2022
Computer Graphics

6
Vulkan Topologies – Requirements and Orientation

Polygons are traditionally:
• CCW when viewed from outside the solid object

V0

V2

V1

V3

V5
V4

It’s not absolutely necessary, but there are possible
optimizations if you are consistent

Polygons must be:
• Convex and
• Planar

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST

mjb – December 20, 2022
Computer Graphics

7
OpenGL Topologies – Vertex Order Matters

V3

V0

V2

V1V0

V3

V1

V2

VK_PRIMITIVE_TOPOLOGY_LINE_STRIP VK_PRIMITIVE_TOPOLOGY_LINE_STRIP

mjb – December 20, 2022
Computer Graphics

8
What does “Convex Polygon” Mean?

V0

V3

V1

V2

V0

V3

V1

V2

Convex Not Convex

We could go all mathematical here, but let’s go visual instead. In a convex polygon, a
line between any two points inside the polygon never leaves the inside of the polygon.

12/29/2022

3

mjb – December 20, 2022
Computer Graphics

9
What does “Convex Polygon” Mean?

V0

V3

V1

V2

V0

V3

V1

V2

Convex Not Convex

OK, now let’s go all mathematical. In a convex polygon, every interior angle is
between 0° and 180°.

Between 0° and 180°

Greater than180°

mjb – December 20, 2022
Computer Graphics

10
Why is there a Requirement for Polygons to be Convex?

V0

V3

V1

V2
V0

V3

V1

V2

Convex Not Convex

Graphics polygon-filling hardware can be highly optimized if you know that, no matter what
direction you fill the polygon in, there will be two and only two intersections between the scanline
and the polygon’s edges

mjb – December 20, 2022
Computer Graphics

11
What if you need to display Polygons that are not Convex?

There is an open source library to break a non-convex polygon into convex polygons. It is
called Polypartition, and is found here:

https://github.com/ivanfratric/polypartition

If you ever need to do this, contact me. I have working code …

mjb – December 20, 2022
Computer Graphics

12Why is there a Requirement for Polygons to be Planar?

Graphics hardware assumes that a polygon has a
definite front and a definite back, and that you can
only see one of them at a time

OK OK Not OK

12/29/2022

4

mjb – December 20, 2022
Computer Graphics

13Vertex Orientation Issues
Thanks to OpenGL, we are all used to drawing in a right-handed coordinate system.

Internally, however, the Vulkan pipeline uses a left-handed system:

The best way to handle this is to continue to draw in a RH coordinate system
and then fix it up in the GLM projection matrix, like this:

ProjectionMatrix[1][1] *= -1.;
This is like saying “Y’ = -Y”.

X

Y

Z

0
1

23

CCW

X

Y

Z

3
2

10

CW !

mjb – December 20, 2022
Computer Graphics

14

0 1

32

4 5

76

static GLuint CubeTriangleIndices[][3] =
{

{ 0, 2, 3 },
{ 0, 3, 1 },
{ 4, 5, 7 },
{ 4, 7, 6 },
{ 1, 3, 7 },
{ 1, 7, 5 },
{ 0, 4, 6 },
{ 0, 6, 2 },
{ 2, 6, 7 },
{ 2, 7, 3 },
{ 0, 1, 5 }
{ 0, 5, 4 }

};

A Colored Cube Example

mjb – December 20, 2022
Computer Graphics

15Triangles in an Array of Structures

struct vertex
{

glm::vec3 position;
glm::vec3 normal;
glm::vec3 color;
glm::vec2 texCoord;

};

struct vertex VertexData[] =
{

// triangle 0-2-3:
// vertex #0:
{

{ -1., -1., -1. },
{ 0., 0., -1. },
{ 0., 0., 0. },
{ 1., 0. }

},

// vertex #2:
{

{ -1., 1., -1. },
{ 0., 0., -1. },
{ 0., 1., 0. },
{ 1., 1. }

},

// vertex #3:
{

{ 1., 1., -1. },
{ 0., 0., -1. },
{ 1., 1., 0. },
{ 0., 1. }

},

0 1

32

4 5

76

From the file SampleVertexData.cpp:

Modeled in
right-handed
coordinates

mjb – December 20, 2022
Computer Graphics

16

VkPipelineRasterizationStateCreateInfo vprsci;

. . .

vprsci.cullMode = VK_CULL_MODE_NONE
vprsci.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;

Vulkan’s change in coordinate systems can mess up the backface culling.

So I recommend, at least at first, that you do no culling.

Vertex Orientation Issues
This object was modeled such that triangles that face
the viewer will look like their vertices are oriented CCW
(this is detected by looking at vertex orientation at the
start of the rasterization).

Because this 3D object is closed, Vulkan can save
rendering time by not even bothering with triangles
whose vertices look like they are oriented CW. This is
called backface culling.

12/29/2022

5

mjb – December 20, 2022
Computer Graphics

17

MyBuffer MyVertexDataBuffer;

Init05MyVertexDataBuffer(sizeof(VertexData), &MyVertexDataBuffer);
Fill05DataBuffer(MyVertexDataBuffer, (void *) VertexData);

VkResult
Init05MyVertexDataBuffer(IN VkDeviceSize size, OUT MyBuffer * pMyBuffer)
{

VkResult result = Init05DataBuffer(size, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, pMyBuffer);
return result;

}

Filling the Vertex Buffer

mjb – December 20, 2022
Computer Graphics

18

VkResult
Init05DataBuffer(VkDeviceSize size, VkBufferUsageFlags usage, OUT MyBuffer * pMyBuffer)
{

VkResult result = VK_SUCCESS;
VkBufferCreateInfo vbci;

vbci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
vbci.pNext = nullptr;
vbci.flags = 0;
vbci.size = pMyBuffer->size = size;
vbci.usage = usage;
vbci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
vbci.queueFamilyIndexCount = 0;
vbci.pQueueFamilyIndices = (const uint32_t *)nullptr;

result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &pMyBuffer->buffer);

VkMemoryRequirements vmr;
vkGetBufferMemoryRequirements(LogicalDevice, IN pMyBuffer->buffer, OUT &vmr); // fills vmr

VkMemoryAllocateInfo vmai;
vmai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
vmai.pNext = nullptr;
vmai.allocationSize = vmr.size;
vmai.memoryTypeIndex = FindMemoryThatIsHostVisible();

VkDeviceMemory vdm;
result = vkAllocateMemory(LogicalDevice, IN &vmai, PALLOCATOR, OUT &vdm);
pMyBuffer->vdm = vdm;

result = vkBindBufferMemory(LogicalDevice, pMyBuffer->buffer, IN vdm, 0); // 0 is the offset
return result;

}

A Reminder of What Init05DataBuffer Does

mjb – December 20, 2022
Computer Graphics

19

Input Assembly

Vertex Input Stage

Viewport

Vertex Shader module
Specialization info
Vertex Input binding
Vertex Input attributes

Pipeline Layout

Vertex Shader module
Specialization info

PipleineLayoutCreateInfo

Fragment Shader Stage

Topology

Which shaders are present

Viewport
Scissoring

Depth Clamping
DiscardEnable
PolygonMode
CullMode
FrontFace
LineWidth

Rasterization

Dynamic State
Which states are dynamic

Depth/Stencil
DepthTestEnable
DepthWriteEnable
DepthCompareOp
StencilTestEnable

Tesselation, GeometryTesselation Shaders, Geometry Shader

Color Blending parameters
Color Blending Stage

The Vulkan Pipeline Data Structure

mjb – December 20, 2022
Computer Graphics

20

VkVertexInputBindingDescription vvibd[1]; // one of these per buffer data buffer
vvibd[0].binding = 0; // which binding # this is
vvibd[0].stride = sizeof(struct vertex); // bytes between successive structs
vvibd[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;

Telling the Pipeline Data Structure about its Input

We will come to the Pipeline later, but for now, know that a Vulkan pipeline is essentially a very large
data structure that holds (what OpenGL would call) the state, including how to parse its input.

struct vertex
{

glm::vec3 position;
glm::vec3 normal;
glm::vec3 color;
glm::vec2 texCoord;

};

layout(location = 0) in vec3 aVertex;
layout(location = 1) in vec3 aNormal;
layout(location = 2) in vec3 aColor;
layout(location = 3) in vec2 aTexCoord;

12/29/2022

6

mjb – December 20, 2022
Computer Graphics

21

VkVertexInputAttributeDescription vviad[4]; // array per vertex input attribute
// 4 = vertex, normal, color, texture coord
vviad[0].location = 0; // location in the layout decoration
vviad[0].binding = 0; // which binding description this is part of
vviad[0].format = VK_FORMAT_VEC3; // x, y, z
vviad[0].offset = offsetof(struct vertex, position); // 0

vviad[1].location = 1;
vviad[1].binding = 0;
vviad[1].format = VK_FORMAT_VEC3; // nx, ny, nz
vviad[1].offset = offsetof(struct vertex, normal); // 12

vviad[2].location = 2;
vviad[2].binding = 0;
vviad[2].format = VK_FORMAT_VEC3; // r, g, b
vviad[2].offset = offsetof(struct vertex, color); // 24

vviad[3].location = 3;
vviad[3].binding = 0;
vviad[3].format = VK_FORMAT_VEC2; // s, t
vviad[3].offset = offsetof(struct vertex, texCoord); // 36

Telling the Pipeline Data Structure about its Input
struct vertex
{

glm::vec3 position;
glm::vec3 normal;
glm::vec3 color;
glm::vec2 texCoord;

};

layout(location = 0) in vec3 aVertex;
layout(location = 1) in vec3 aNormal;
layout(location = 2) in vec3 aColor;
layout(location = 3) in vec2 aTexCoord;

mjb – December 20, 2022
Computer Graphics

22Telling the Pipeline Data Structure about its Input

We will come to the Pipeline later, but for now, know that a Vulkan Pipeline is essentially a very large
data structure that holds (what OpenGL would call) the state, including how to parse its input.

VkPipelineVertexInputStateCreateInfo vpvisci; // used to describe the input vertex attributes
vpvisci.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vpvisci.pNext = nullptr;
vpvisci.flags = 0;
vpvisci.vertexBindingDescriptionCount = 1;
vpvisci.pVertexBindingDescriptions = vvibd;
vpvisci.vertexAttributeDescriptionCount = 4;
vpvisci.pVertexAttributeDescriptions = vviad;

VkPipelineInputAssemblyStateCreateInfo vpiasci;
vpiasci.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
vpiasci.pNext = nullptr;
vpiasci.flags = 0;
vpiasci.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;

mjb – December 20, 2022
Computer Graphics

23

VkGraphicsPipelineCreateInfo vgpci;
vgpci.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
vgpci.pNext = nullptr;
vgpci.flags = 0;
vgpci.stageCount = 2; // number of shader stages in this pipeline
vgpci.pStages = vpssci;
vgpci.pVertexInputState = &vpvisci;
vgpci.pInputAssemblyState = &vpiasci;
vgpci.pTessellationState = (VkPipelineTessellationStateCreateInfo *)nullptr; // &vptsci
vgpci.pViewportState = &vpvsci;
vgpci.pRasterizationState = &vprsci;
vgpci.pMultisampleState = &vpmsci;
vgpci.pDepthStencilState = &vpdssci;
vgpci.pColorBlendState = &vpcbsci;
vgpci.pDynamicState = &vpdsci;
vgpci.layout = IN GraphicsPipelineLayout;
vgpci.renderPass = IN RenderPass;
vgpci.subpass = 0; // subpass number
vgpci.basePipelineHandle = (VkPipeline) VK_NULL_HANDLE;
vgpci.basePipelineIndex = 0;

result = vkCreateGraphicsPipelines(LogicalDevice, VK_NULL_HANDLE, 1, IN &vgpci,
PALLOCATOR, OUT pGraphicsPipeline);

Telling the Pipeline Data Structure about its Input

We will come to the Pipeline later, but for now, know that a Vulkan Pipeline is essentially a very large
data structure that holds (what OpenGL would call) the state, including how to parse its input.

mjb – December 20, 2022
Computer Graphics

24

VkBuffer buffers[1] = MyVertexDataBuffer.buffer;

vkCmdBindVertexBuffers(CommandBuffers[nextImageIndex], 0, 1, buffers, offsets);

const uint32_t vertexCount = sizeof(VertexData) / sizeof(VertexData[0]);
const uint32_t instanceCount = 1;
const uint32_t firstVertex = 0;
const uint32_t firstInstance = 0;

vkCmdDraw(CommandBuffers[nextImageIndex], vertexCount, instanceCount, firstVertex, firstInstance);

We will come to Command Buffers later, but for now, know that you will specify the vertex buffer
that you want drawn.

Telling the Command Buffer what Vertices to Draw

Don’t ever hardcode the size of an array! Always get the compiler to generate it for you.

const uint32_t vertexCount = 100;

