12/29/2022

What is a Vertex Buffer?

YWuikan.

Vertex Buffers Vertex Buffers are how you draw things in Vulkan. They are very much
like Vertex Buffer Objects in OpenGL, but more detail is exposed to you
(a lot more...).

But, the good news is that Vertex Buffers are really just ordinary Data
Buffers, so some of the functions will look familiar to you.

Oregon State
University First, a quick review of computer graphics geometry . . .
Mike Bailey

mib@cs.oregonstate.edu

Oregon State Drey

n State
University University
Computer Graphics osconenr 20,200 Computer Graphics oeconenr 20,203
utes oo o ~Dacenber i ~Decenber |
3 K 4
Geometry vs. Topology Vulkan Topologies

Original Object 4

5/73,7@ typedef enum VkPrimitive Topology
© 6,

n%s’r VK_PRIMITIVE_TOPOLOGY_POINT_LIST =0,

3 VK_PRIMITIVE_TOPOLOGY_LINE_LIST
4 VK_PRIMITIVE_TOPOLOGY_LINE_STRIP =2,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST =3,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP =4,
2 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN =5,
3 VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY =6,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY =7,

1 3 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY =8,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY =9,
2 VK_PRIMITIVE_TOPOLOGY_PATCH_LIST = 10,
} VkPrimitive Topology;

—

Geometry = changed
2 Topology = same (1-.

Geometry = same
Topology = changed (1-2-4-3-1)

Geometry:
Topology:
Where things are (e.g., coordinates) B
How things are connected §
Oregon State Dregon State
Universi Universi
Computer Craphics Computer Ghaphics
o Decerber 20,2022 i ecember 20,2022 |
. 5 . i . i 6
Vulkan Topologies Vulkan Topologies — Requirements and Orientation
VK_PRIMITIVE_TOPOLOGY_POINT_LIST VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST
V,
° v, v, S Polygons must be:
Py ¢ Convex and
2 \ * Planar
. V3

Vo oV Vo Vi

Polygons are traditionally:
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP

VK_PRIMITIVE_TOPOLOGY_LINE_LIST * CCW when viewed from outside the solid object

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST

VS
Vv, V,
V!
Vo Vi
V!
V. y "
1 It's not absolutely necessary, but there are possible
Vo optimizations if you are consistent
e Dregon State
iversity
Computer Graphics A A [—— Computer Graphics b _Decenter 20,2022

12/29/2022

7
OpenGL Topologies — Vertex Order Matters
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP VK_PRIMITIVE_TOPOLOGY_LINE_STRIP
V3 VZ
V, Vs
V. V.
Vo ' A '
University
Computer Graphics

o —Dacenber 20,2022
9

What does “Convex Polygon” Mean?

We could go all mathematical here, but let's go visual instead. In a convex polygon, a
line between any two points inside the polygon never leaves the inside of the polygon.

Convex Not Convex
V3 VZ

Vi

DregonState

University
Computer Graphics

b —Dacenbar 20, 2022 |

What does “Convex Polygon” Mean?

OK, now let’s go all mathematical. In a convex polygon, every interior angle is
between 0° and 180°.

Convex Not Convex
V3 V!

Between 0° and 180°

VU VU
v, N 2
Greater than180
Vl
University
Computer Graphics

mib — Decerber 20, 2022

Why is there a Requirement for Polygons to be Convex?

Graphics polygon-filling hardware can be highly optimized if you know that, no matter what
direction you fill the polygon in, there will be two and only two intersections between the scanline
and the polygon’s edges

Convex Not Convex
V! V3

Vo Vo

Vi

DregonState

University
Computer Graphics

b Decerter 20,2022 |

What if you need to display Polygons that are not Convex?

There is an open source library to break a non-convex polygon into convex polygons. Itis
called Polypartition, and is found here:

https://github.com/ivanfratric/polypartition

If you ever need to do this, contact me. | have working code ...

wersity
Computer Graphics
iy - Deconter 20,2022

Why is there a Requirement for Polygons to be Planar?

Graphics hardware assumes that a polygon has a
definite front and a definite back, and that you can
only see one of them at a time

oK
OK Not OK

DregonState

Computer Graphics

mib - Decerber 20, 2022

Vertex Orientation Issues 13

Thanks to OpenGL, we are all used to drawing in a right-handed coordinate system.

v? ?
ccw
[) ¥ !
X
z
Internally, however, the Vulkan pipeline uses a left-handed system:
X
0 1
z
cw!
Y
9 2

The best way to handle this is to continue to draw in a RH coordinate system
and then fix it up in the GLM projection matrix, like this:
ProjectionMa 1][1]*=

12/29/2022

A Colored Cube Example

static GLloat CubeColors[]{3] =
{

E R

static GLuint CubeTrianglelndices[][3] =
{

MANOOANLNOWN
PO wNNOaNO NS

static GLiloat CubeVertices] 3] =
{

SerNe SRR RESs

University
Computer Graphics

b —Dacenbar 20, 2022 |

Vertex Orientation Issues 16

This object was modeled such that triangles that face
the viewer will look like their vertices are oriented CCW

3 : (this is detected by looking at vertex orientation at the

: start of the rasterization).
cow

Because this 3D object is closed, Vulkan can save

fe ! rendering time by not even bothering with triangles
whose vertices look like they are oriented CW. This is
called backface culling.

x

g ’

z/ C e Vulkan’s change in coordinate systems can mess up the backface culling.
¥

2 Solrecommend, at least at first, that you do no culling.

VkPipelii izati vprsci;

vprsci.cullMod
vprsci.frontFact

VK_CULL_MODE_NONE

\'/ NTER_CLOCKWISE;

Dregon State

University
Computer Graphics
i Decenterz0, 2022 |

University This is like saying *Y’ =
Computer Graphics ving
o —Dacenber 20,2022
Triangles in an Array of Structures 15
From the file SampleVertexData.cpp: 2 3
struct vertex
position; P
normal;
color;
texCoord;
¥
struct vertex VertexData[| =
1
Il triangle 0-2-3:
Il vertex #0:
h
Ilvertex #2:
(A, 1,10, Modeled in
{0,0,1), ight-
{0, 1,0} right-handed
{11} coordinates
i
Dr)
1
Computer Graphics
o ~Decenber 20,2022
Filling the Vertex Buffer 17

MyBuffer MyVertexDataBuffer;

Init05MyVertexDataBuffer(sizeof(VertexData), &MyVertexDataBuffer);
Fillo5DataBuffer(MyVertexDataBuffer, (void *) VertexData);

VkResult
Init05MyVertexDataBuffer(IN VkDeviceSize size, OUT MyBuffer * pMyBuffer)

VkResult result = Inito5DataBuffer(size, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, pMyBuffer);
return resul;

University
Computer Graphics
iy - Deconter 20,2022

A Reminder of What Init05DataBuffer Does 18

VkResult
Inito5DataBuffer(VkDeviceSize size, VkBufferUsageFlags usage, OUT MyBuffer * pMyBuffer)

VkResult result = VK_SUCCESS;
VkBufferCreatelnfo vbci;
vbei.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
vbei.pNext = nuliptr;

ize = pMyBuffer->size = size;

Vboi.usage = usage;

vbi.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

vboi.queueFamilylndexCount = 0;

vbei.pQueueFamilyindices = (const uint32_t *)nullptr;

result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &pMyBuffer->buffer);

VkMemoryRequirements vmr;
VkGetBuferMemoryRequirements(LogicalDevice, IN pMyBufler->buffer, OUT &mr), // fills vmr

VkMemoryAllocatelnfo Cmai)

vmai.sType = VK_STRUCTURE_TWPE_MEMORY_ALLOCATE_INFO;

vmai allocationSize = vmr.size;
vmai. YType =Fi Yy isible();
VkDeviceMemory v

dm;
result = vkAllocateMemory(LogicalDevice, IN &mai, PALLOCATOR, OUT &vdm);
pMyBuffer->vdm = vdm;

result = vkBi LogicalDevice, pMy buffer, IN vdm, 0); 11 0s the offset
return result;

}

University
Computer Graphics

ib - Docenber 20,2022 |

The Vulkan Pipeline Data Structure 19
Vertex Shader module X Input Stage

Specialization info
Vertex Input binding
Vertex Input attributes

e — N |
[Tesseation Shaders, Geometry Shader — Tesselation, Geometry I

Scissoring | Viewport]

Depth Clamping

DiscardEnable

PolygonMode

CullMode] Rasterization |
FrontFace
LineWidth

Which states are dynamic f DTSR |
amic
32

DepthTestEnable =
DepthWriteEnable Depth/Stencil]
DepthCompareOp
StencilTestEnable
[PipleineLayoutCreateinfo | [[Which shaders are present
[Pipeline Layout]
Vertex Shader module] [Fragment Shader Stage]

Specialization info

Color Blending Stage]
o - Docamber 20,2022

Cf Color Blending parameters

12/29/2022

Telling the Pipeline Data Structure about its Input 20

We will come to the Pipeline later, but for now, know that a Vulkan pipeline is essentially a very large
data structure that holds (what OpenGL would call) the state, including how to parse its input.

struct vertex
. layout(location = 0) in vec3 aVertex;
gl position; s | jayout(location = 1) in vec3 aNormal;
gl normal; layout(location = 2 in vec3 aColor;
gl color; layout(location = 3) in vec2 aTexCoord;
gl texCoord;
¥
VkVertexinputBindingDescription wibd[1]; Il one of these per buffer data buffer
‘wibd[0].binding = 0; /I which binding # this is
wibd[0].stride = sizeof(struct vertex); /I bytes between successive structs

wibd[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;

Drey ate

University
Computer Graphics

b —Dacenbar 20, 2022 |

Telling the Pipeline Data Structure about its Input 21
struct vertex
{ layout(location = 0) in vec3 aVertex;
: position;) | layout(location = 1) in vec3 aNormal;

normal; layout(location = 2 in vec3 aColor;
color; layout(location = 3) in vec2 aTexCoord;
texCoord;

¥

VkVertexinputAttributeDescription wviad[4]; 1/ array per vertex input attribute

114 = vertex, normal, color, texture coord

‘wiad[0].location = 0; I/ location in the layout decoration
‘wviad[0].binding 1 which binding description this is part of
wiad[0].format = VK_FORMAT_VEC3; /I X, y, z

wiad[0].offset = offsetof(struct vertex, position); 1o

‘wviad[1].location = 1;

wiad[1].binding = 0;

wiad[1].format = VK_FORMAT_VEC3; 1 nx, ny, nz
wviad[1].offset = offsetof(struct vertex, normal); 12

‘wiad[2].location = 2;

wiad[2].binding = 0;

wiad[2].format = VK_FORMAT_VEC3; /I, g, b
wiad[2].offset = offsetof(struct vertex, color); 1124

‘wviad[3].location =
‘wviad(3].binding

‘wviad[3].format = VK_FORMAT_VEC2; II's, t
wviad[3].offset = offsetof(struct vertex, texCoord); 1136

omversTy—
Computer Graphics
i -Deconer 20,2022

Telling the Pipeline Data Structure about its Input 22

We will come to the Pipeline later, but for now, know that a Vulkan Pipeline is essentially a very large
data structure that holds (what OpenGL would call) the state, including how to parse its input.

VkPipelineVertexinputStateCreateInfo VpVisCi; 1/ used to describe the input vertex attributes
vpisci.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vpvisci.pNext ullptr;

vpvisci.flags = 0;
vpvisci.vertexBindingDescriptionCount = 1;
vpvisci.pVertexBindingDescriptions = vvibd;
vpvisci.vertexAttributeDescriptionCount = 4;
vpvisci.pVertexAttributeDescriptions = vviad;

kP reatelnfo vpiasci;
vpiasci.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
vpiasci.pNext = nullptr;
vpiasci.flags = 0;
vpiasci.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;

Drey

State

University
Computer Graphics

b Decerter 20,2022 |

Telling the Pipeline Data Structure about its Input 23

We will come to the Pipeline later, but for now, know that a Vulkan Pipeline is essentially a very large
data structure that holds (what OpenGL would call) the state, including how to parse its input.

VkGraphicsPipelineCreatelnfo
vgpci.sType = VK_STRUCTURE_’
vgpci.pNext = nullptr;
vgpci.flags = 0;
vgpci.stageCount = 2;
vgpci.pStages = vpssci;
vgpci.pVertexinputState = &vpvisci;
vgpci.pinputAssemblyState = &vpiasci;
vgpci.pTessellationState = (VkPipelineTessellationSt:
vgpci.pViewportState = &vpvsci;
vgpci.pRasterizationState = &vprsci;
vgpci.pMultisampleState = &vpmsci;
vgpci.pDepthStencilState = &vpdssci;
vgpci.pColorBlendState = &vpcbsci;
vgpci.pDynamicState = &vpdsci;
vgpci.layout = IN GraphicsPipelineLayout;
vgpci.renderPass = IN RenderPass;
vgpci.subpass =0; I subpass number
vgpci.basePipelineHandle = (VkPipeline) VK_NULL_HANDLE;
vgpci.basePipelinelndex = 0;

APHICS_PIPELINE_CREATE_INFO;

/I number of shader stages in this pipeline

Createlnfo *)nullptr; 11 &vptsci

result = vkCreateGraphicsPipelines(LogicalDevice, VK_NULL_HANDLE, 1, IN &vgpci,
PALLOCATOR, OUT pGraphicsPipeline);

University
Computer Graphics
iy - Deconter 20,2022

Telling the Command Buffer what Vertices to Draw 24

We will come to Command Buffers later, but for now, know that you will specify the vertex buffer
that you want drawn.

VkBuffer buffers[1] = MyVertexDataBuffer.buffer;

vkCmdBir Cor 0, 1, buffers, offsets);

const uint32_t vertexCount zeof (VertexData) / sizeof(VertexData[0
const uint32_t instance§ount = 1;
const uint32_t firstVerte\ = 0;
const uint32_t firstinstande = 0;

vkCmdDraw(CommandBuffers[nextimagelndex], veftexCount, instanceCount, firstVertex, firstinstance);

Don't ever hardcode the size of an array! Always get the compiler to generate it for you. |

const uint; &xCount = 100;

Dregon State V. .
A2

University
Computer Graphics
iy - Deconter 20,2022

