Given the Boolean expression below (Y is the output), realize a single stage CMOS combinatorial logic circuit by creating complementary pull-down (PDN) and pull-up (PUP) networks.

$$Y = A \cdot \overline{B} \cdot (\overline{C} + D \cdot E)$$
Find the input to output transfer function $H(s)$. Ignore all intrinsic capacitances.
For the linear oscillator circuit shown below, find the oscillation frequency and g_m value required to ensure oscillation.
Given the Boolean expression below (Y is the output), realize a single stage CMOS combinatorial logic circuit by creating complementary pull-down (PDN) and pull-up (PUP) networks.

\[Y = (A + B) \cdot (C + D) \]
Find the small-signal Norton-equivalent input-to-output transconductance G_m and output resistance R_{out}. Taking into account only the capacitor C_1 (i.e. ignore intrinsic capacitances), find the small-signal input-to-output transfer function $H(s)$.

![Circuit Diagram]
Find the small-signal gain and the “upper 3dB frequency” \(\omega_H \).
For the linear oscillator circuit shown below, find the oscillation frequency and resistor value R_2 required to ensure oscillation.