Chapter 12

Using Passive Devices

This chapter describes element and model statements for passive devices. It includes statements for resistors, inductors, capacitors, and assorted magnetic elements and models.

Resistors, inductors, and capacitors are of two types:

- A simple, linear element with a value that depends on temperature, initialization, and scaling.
- An element that refers to a model statement

Use the set of passive elements and model statements to construct a wide range of board and integrated circuit level designs. Passive elements let you include transformers, PC board trace interconnects, coaxial cables and transmission lines in an analysis. The wire element model is specifically designed to model the RC delay and RC transmission line effects of interconnects at both the IC level and the PC board level.

To aid in designing power supplies, a mutual-inductor model includes switching regulators and a number of other magnetic circuits, including a magnetic-core model and element. You can specify precision modeling of passive elements using geometric, temperature, and parasitic model parameters.

This chapter covers the following topics:

- Using the Element Statement
- Using the Resistor Element
- Using the Capacitor Element
- Using the Linear Inductor Element
- Using Magnetics
Using the Element Statement

The element statement specifies the type of element used. It has fields for the element name, the connecting nodes, a component value, and optional parameters.

Syntax

```
NAME node1, node2 ... nodeN <model reference>
value <optional parameters>
```

NAME Specifies the type and name of element. The first letter in the name field identifies the element as a specific type. For example, C=capacitor, L=inductor, or R=resistor. The remaining letters give the element a unique name.

node1 ... nodeN Specifies how the element is connected in the netlist.

value Gives the value of the element. For example, C1 2 0 10uF.

<model reference> Refers to a model when the basic element value does not provide an adequate description.

Element Parameters

Element parameters within the element statement describe the device type, device terminal connections, associated model reference, element value, DC initialization voltage or current, element temperature, and parasitics.

The following tables include the complete set of parameters for all the available elements. The netlist field includes the element name (for example, Rxxx or Cxxx), the connecting nodes (for example, n1, n2), and any associated element value parameters (for example, rval in the resistor statement or cval in the capacitor statement).
Using Passive Devices

Table 12-1: R, L, C, and K Element Parameters

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Capacitor</th>
<th>Inductor</th>
<th>Mutual Inductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>netlist</td>
<td>Rxxx, n1, n2</td>
<td>Cxxx, n1, n2</td>
<td>Lxxx, n1, n2</td>
</tr>
<tr>
<td></td>
<td>mname, rval</td>
<td>mname, cval</td>
<td>mname, lval</td>
</tr>
<tr>
<td>temperature</td>
<td>DTEMP, TC1, TC2</td>
<td>DTEMP, TC1, TC2</td>
<td>DTEMP, TC1, TC2</td>
</tr>
<tr>
<td>geometric</td>
<td>L, M, W, SCALE</td>
<td>L, M, W, SCALE</td>
<td>M, SCALE</td>
</tr>
<tr>
<td>(scaling)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parasitics</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td>IC(v)</td>
<td>IC(i)</td>
<td></td>
</tr>
</tbody>
</table>

Table 12-2 shows two nonlinear elements. Use nonlinear elements to specify nonlinear inductors and capacitors in a polynomial equation. Specify either a nonlinear or linear element equation with the netlist parameters POLY, C0, and C1.

Table 12-2: Nonlinear L and C Element Parameters

<table>
<thead>
<tr>
<th>Nonlinear Inductor</th>
<th>Nonlinear Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>netlist</td>
<td>Lxxx, n1, n2, POLY, C0, C1</td>
</tr>
<tr>
<td>geometric</td>
<td>M</td>
</tr>
<tr>
<td>initialization</td>
<td>IC(i)</td>
</tr>
</tbody>
</table>

Geometric parameters describe the dimensions of the element.

DTEMP is an element temperature parameter. It represents the difference between the general circuit simulation temperature and the element temperature. Element temperature = circuit temperature + DTEMP.

The magnetic winding element has a secondary resistance parasitic parameter (R) to model secondary parasitics.
The element statement provides initialization parameters for capacitor, inductor, magnetic winding, and transmission line elements to initialize circuits for DC analysis.

Table 12-3: Magnetic and Transmission Line Element Parameters

<table>
<thead>
<tr>
<th>Function</th>
<th>Magnetic Winding</th>
<th>Mutual Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>netlist</td>
<td>Lxxx, n1, n2</td>
<td>Kxxx, Lyyy, mname</td>
</tr>
<tr>
<td>geometric</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>parasitics</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td>IC(i)</td>
<td>MAG</td>
</tr>
</tbody>
</table>

Model Statement

Capacitor, resistor, and mutual coupling element statements have associated model capacitor, wire, and magnetic core model statements. The capacitor, wire, and magnetic core model statements use the following syntax:

General form

```
.MODEL mname modeltype <keyword=value>
```

- `mname` Refers to the model reference name specified in the associated element statement
- `modeltype` Specifies the model type: R for wire model, C for capacitor model, L for magnetic core model

Model Parameters

The model statement for each element has associated parameters to specify temperature, geometric dimensions, primary and parasitic resistance, and capacitive and magnetic values. You can set both resistance and capacitor values in the wire model, to model interconnect.
Table 12-4: Passive Model Parameters

<table>
<thead>
<tr>
<th>Function</th>
<th>Wire Model</th>
<th>Capacitor</th>
<th>Saturable Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>TC1C, TC1R, TC2C, TC2R, TREF</td>
<td>TC1, TC2, TREF</td>
<td>AC, LC, LG, TC</td>
</tr>
<tr>
<td>Geometric</td>
<td>DLR, DW, L, SHRINK, THICK, W</td>
<td>DEL, L, SHRINK, THICK, W</td>
<td>AC, LC, LG, TC</td>
</tr>
<tr>
<td>Resistance</td>
<td>RAC, RES, RSH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>BULK, CAP, CAPSW, COX, DI</td>
<td>CAP, CAPSW, COX, DI</td>
<td>BS, BR, HC, HCR, HS</td>
</tr>
<tr>
<td>Magnetic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using the Resistor Element

The resistor element uses the following element statement formats:

Format

The general format of the resistor element is:

```
Rxxx n1 n2 <mname> rval <TC1 <TC2>> <SCALE=val>
<M=val> <AC=val>
+ <DTEMP=val> <L=val> <W=val> <C=val>
```

```
Rxxx n1 n2 <mname> R=val <TC1=val> <TC2=val >
<SCALE=val> <M=val> <AC=val>
+ <DTEMP=val> <L=val> <W=val> <C=val>
Rxxx n1 n2 R='equation'
```

If you specify mname, the resistor value specification is optional.

- **AC**
 - AC resistance used in the AC analysis. Default=Reff.
 - \(AC_{eff} = AC \cdot SCALE \cdot M \)

- **C**
 - Capacitance connected from node n2 to bulk. Default=0.0, if C is not specified in the model.
 - \(C_{eff} = C \cdot SCALE \cdot M \)

- **DTEMP**
 - Temperature difference between the element and the circuit. Default=0.0.

- **L**
 - Resistor length. Default = 0.0, if L is not specified in the model.
 - \(L_{scaled} = L \cdot SHRINK \cdot SCALE \cdot M \)

 SHRINK is a model parameter that specifies the fabrication shrink factor.
Using Passive Devices

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Multiplier that simulates parallel resistors. For example, to represent two parallel instances of a resistor, set $M=2$ to multiply the number of resistors by 2. Default=1.0.</td>
</tr>
<tr>
<td><code>mname</code></td>
<td>Model name. Use this name in elements to reference the model.</td>
</tr>
<tr>
<td><code>n1</code></td>
<td>Positive terminal node name</td>
</tr>
<tr>
<td><code>n2</code></td>
<td>Negative terminal node name</td>
</tr>
<tr>
<td><code>R=equation</code></td>
<td>Equation that describes the resistor value as a function of any node voltages, branch currents, and any independent variables such as time, frequency (Hertz), or temperature.</td>
</tr>
<tr>
<td><code>R=val</code></td>
<td>Resistance value</td>
</tr>
<tr>
<td><code>Rxxx</code></td>
<td>Resistor element name. Must begin with "R", which can be followed by up to 15 alphanumeric characters.</td>
</tr>
<tr>
<td><code>rval</code></td>
<td>Resistor value. Can be a value or parameter that can be evaluated.</td>
</tr>
<tr>
<td><code>SCALE</code></td>
<td>Element scale factor for resistance and capacitance. Default=1.0.</td>
</tr>
<tr>
<td><code>TC1</code></td>
<td>First order temperature coefficient for resistor</td>
</tr>
<tr>
<td><code>TC2</code></td>
<td>Second order temperature coefficient for resistor</td>
</tr>
<tr>
<td><code>W</code></td>
<td>Resistor width. Default=0.0, if W is not specified in the model. SHRINK is a model parameter.</td>
</tr>
</tbody>
</table>

\[
Reff = \frac{R \cdot SCALE\ (element)}{M} = W \cdot SHRINK \cdot SCALE\ (option)
\]
Examples
R1 Rnode1 Rnode2 100
RC1 12 17 1K TC=0.001, 0 1.2
R4 33 0 45 RTC1 RTC2 7
Rxxx 98999999 87654321 1 AC=1e10

Resistor Noise Equation
The thermal noise of a resistor is modeled by:

\[inr = \left(NOISE \cdot \frac{4kT}{R_{val}} \right)^{1/2} \]

where NOISE is a model parameter that defaults to 1. To eliminate the contribution of resistor noise, use the NOISE parameter. To specify the NOISE parameter, use a model for the resistor.

Noise Summary Print out Definitions
RX Transfer function of thermal noise to the output. This is not noise, but is a transfer coefficient, reflecting the contribution of thermal noise to the output.

TOT, V^2/Hz Total output noise: \[OT = RX^2 \cdot inr \]
Resistor Temperature Equations

The resistor and capacitor values are modified by temperature values as follows:

\[
R(t) = R \cdot (1.0 + TC1 \cdot \Delta t + TC2 \cdot \Delta t^2)
\]

\[
RAC(t) = RAC \cdot (1.0 + TC1 \cdot \Delta t + TC2 \cdot \Delta t^2)
\]

\[
C(t) = C \cdot (1.0 + TC1 \cdot \Delta t + TC2 \cdot \Delta t^2)
\]

\[
\Delta t = t - t_{\text{nom}}
\]

\[
t = \text{Element temperature in } ^\circ\text{K: } t = \text{circuit temp} + \text{DTEMP} + 273.15
\]

\[
t_{\text{nom}} = \text{Nominal temperature in } ^\circ\text{K: } t_{\text{nom}} = 273.15 + \text{TNOM}
\]

Wire RC Model

The Hspice wire element RC model is a CRC (pi) model. Use the CRATIO wire model parameter to allocate the parasitic capacitance of the wire element between the model’s input capacitor and output capacitor. This allows for symmetric node impedance for bidirectional circuits such as buses.

Format

The format of the wire element is:

```
.MODEL mname R keyword=value <CRATIO=val>
```

- **mname** Model name. Elements reference the model with this name.
- **R** Specifies a wire model
- **keyword** Any model parameter name
Using the Resistor Element

CRATIO

Ratio to allocate the total wire element parasitic capacitance between the capacitor connected to the input node and the capacitor connected to the output node of the wire element pi model. You can assign CRATIO any value between 0 and 1:

0 Assigns all of the parasitic capacitance (CAPeff) to the output node

0.5 Assigns half of the parasitic capacitance to the input node and half to the output node

1 Assigns all of the parasitic capacitance to the input node

The default is 0.5. CRATIO values smaller than 0.5 assign more of the capacitance to the output node than to the input node. Values greater than 0.5 assign more of the capacitance to the input node than to the output node.

If you specify a value outside the range of 0 to 1.0 is specified for CRATIO, Hspice displays a warning, sets CRATIO to 0.5, and continues the analysis.

\[
\begin{align*}
C &= \text{CAPeff} \cdot (1 - \text{CRATIO}) \\
C &= \text{CAPeff}
\end{align*}
\]

A resistor referred to as a wire model behaves like an elementary transmission line if you specify an optional capacitor from node n2 to a bulk or ground node in the model statement. The bulk node functions as a ground plane for the wire capacitance.
A wire is described by a drawn length and a drawn width. The resistance of the wire is the effective length multiplied by RSH divided by the effective width.

To avoid syntactic conflicts, if a resistor model exists using the same name as a parameter for rval in the element statement, the model name is taken. In the following example, R1 assumes that REXX refers to the model and not the parameter.

```
.PARAMETER REXX=1
R1 1 2 REXX
.MODEL REXX R RES=1
```
Wire Model Parameters

<table>
<thead>
<tr>
<th>Name(Alias)</th>
<th>Units</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BULK</td>
<td>gnd</td>
<td>default</td>
<td>default reference node for capacitance</td>
</tr>
<tr>
<td>CAP</td>
<td>F</td>
<td>0</td>
<td>default capacitance</td>
</tr>
<tr>
<td>CAPSW</td>
<td>F/m</td>
<td>0</td>
<td>sidewall fringing capacitance</td>
</tr>
<tr>
<td>COX</td>
<td>F/m²</td>
<td>0</td>
<td>bottomwall capacitance</td>
</tr>
<tr>
<td>DI</td>
<td></td>
<td>0</td>
<td>relative dielectric constant</td>
</tr>
<tr>
<td>DLR</td>
<td>m</td>
<td>0</td>
<td>difference between drawn length and actual length (for resistance calculation only). For capacitance calculation, DW is used $DLReff=DLR \cdot SCALM$</td>
</tr>
<tr>
<td>DW</td>
<td>m</td>
<td>0</td>
<td>difference between drawn width and actual width $DWeff=DW \cdot SCALM$</td>
</tr>
<tr>
<td>L</td>
<td>m</td>
<td>0</td>
<td>default length of wire $Lscaled=L \cdot SHRINK \cdot SCALM$</td>
</tr>
<tr>
<td>LEVEL</td>
<td></td>
<td></td>
<td>model selector (not used)</td>
</tr>
<tr>
<td>RAC</td>
<td>ohm</td>
<td></td>
<td>default AC resistance (RACeff default is Reff)</td>
</tr>
<tr>
<td>RES</td>
<td>ohm</td>
<td>0</td>
<td>default resistance</td>
</tr>
<tr>
<td>RSH</td>
<td></td>
<td>0</td>
<td>sheet resistance/square</td>
</tr>
<tr>
<td>SHRINK</td>
<td></td>
<td>1</td>
<td>shrink factor</td>
</tr>
<tr>
<td>TC1C</td>
<td>1/deg</td>
<td>0</td>
<td>first order temperature coefficient for capacitance</td>
</tr>
<tr>
<td>TC2C</td>
<td>1/deg²</td>
<td>0</td>
<td>second order temperature coefficient for capacitance</td>
</tr>
<tr>
<td>TC1R</td>
<td>1/deg</td>
<td>0</td>
<td>first order temperature coefficient for resistance</td>
</tr>
<tr>
<td>TC2R</td>
<td>1/deg²</td>
<td>0</td>
<td>second order temperature coefficient for resistance</td>
</tr>
<tr>
<td>THICK</td>
<td>m</td>
<td>0</td>
<td>dielectric thickness</td>
</tr>
<tr>
<td>TREF</td>
<td>deg C</td>
<td>TNOM</td>
<td>temperature reference for model parameters</td>
</tr>
</tbody>
</table>
Wire Resistance Calculation

You can specify the wire width and length in both the element and model statements. The element values override the model values. The element width and length are scaled by the option SCALE and the model parameter SHRINK. The model width and length are scaled by the option SCALM and the model parameter SHRINK.

The effective width and length are calculated as follows:

\[
W_{\text{eff}} = W_{\text{scaled}} - 2 \cdot D_{\text{Weff}}
\]
\[
L_{\text{eff}} = L_{\text{scaled}} - 2 \cdot D_{L_{\text{Reff}}}
\]

If element resistance is specified:

\[
R_{\text{eff}} = \frac{R \cdot \text{SCALE(element)}}{M}
\]

Otherwise, if \((W_{\text{eff}} \cdot L_{\text{eff}} \cdot R_{\text{SH}})\) is greater than zero, then:

\[
R_{\text{eff}} = \frac{L_{\text{eff}} \cdot R_{\text{SH}} \cdot \text{SCALE(element)}}{M \cdot W_{\text{eff}}}
\]

If \((W_{\text{eff}} \cdot L_{\text{eff}} \cdot R_{\text{SH}})\) is zero, then:

\[
R_{\text{eff}} = \frac{\text{RES} \cdot \text{SCALE(element)}}{M}
\]

If AC resistance is specified in the element, then:

\[
R_{\text{ACeff}} = \frac{A_{\text{C}} \cdot \text{SCALE(element)}}{M}
\]

<table>
<thead>
<tr>
<th>Name(Alias)</th>
<th>Units</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>m</td>
<td>0</td>
<td>default width of wire</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W_{\text{scaled}} = W \cdot \text{SHRINK} \cdot \text{SCALM}</td>
</tr>
</tbody>
</table>
Using the Resistor Element

Otherwise, if RAC is specified in the model, RAC is used:

\[
RAC_{\text{eff}} = \frac{RAC \cdot \text{SCALE(element)}}{M}
\]

If neither are specified, it defaults to:

\[
RAC_{\text{eff}} = Reff
\]

If the resistance is less than option RESMIN, it is reset to RESMIN and a warning message is issued.

\[
RESMIN = \frac{1}{GMAX \cdot 1000 \cdot M}
\]

Wire Capacitance Calculation

The effective length is the scaled drawn length less 2 \(\cdot \) DLeff. Leff represents the effective length of the resistor from physical edge to physical edge. DWeff is the distance from the drawn edge of the resistor to the physical edge of the resistor. The effective width is the same as the width used in the resistor calculation.

\[
\text{Leff} = L_{\text{scaled}} - 2 \cdot D\text{Leff}
\]

\[
\text{Weff} = W_{\text{scaled}} - 2 \cdot D\text{Weff}
\]

If the element capacitance C is specified:

\[
CAP_{\text{eff}} = C \cdot \text{SCALE(element)} \cdot M
\]

Otherwise, the capacitance is calculated from the Leff, Weff, and COX.

\[
CAP_{\text{eff}} = M \cdot \text{SCALE(element)} \cdot [\text{Leff} \cdot \text{Weff} \cdot \text{COX} + 2 \cdot (\text{Leff} + \text{Weff})]
\]

Using Passive Devices
The computation of the bottom wall capacitance COX is based upon a hierarchy of defaults and specified values involving the dielectric thickness $THICK$, the relative dielectric constant DI, and two absolute dielectric constants ε_0 and ε_{ox}, as follows:

1. If $COX=value$ is given, that value is used.

2. If COX is not given specifically but $THICK$ (the dielectric thickness) is given and nonzero:
 a. If $DI=value$ is given and nonzero then:
 \[
 COX = \frac{DI \cdot \varepsilon_0}{THICK}
 \]
 b. If DI is not given, or is zero, then:
 \[
 COX = \frac{\varepsilon_{ox}}{THICK}
 \]
 where
 \[
 \varepsilon_0 = 8.8542149 \times 10^{-12} \text{ F/meter}
 \]
 \[
 \varepsilon_{ox} = 3.453148 \times 10^{-11} \text{ F/meter}
 \]
 If COX is not given and $THICK=0$ is an error.

3. If only the model capacitance CAP is specified, then:

4. $CAP_{eff} = CAP \cdot SCALE(element) \cdot M$

If the capacitance is specified and the bulk node is not specified, then capacitance is not evaluated and a warning message is issued.

\[
F/meter
\]
Using the Capacitor Element

General form

```
Cxxx n1 n2 <mname> cval <TC1 <TC2>> <SCALE=val>
<IC=val> <M=val> <W=val>
+ <L=val> <DTEMP=val>
```

or

```
Cxxx n1 n2 <mname> C=val <TC1=val> <TC2=val> <IC=val>
<M=val> <W=val> <L=val>
+ <DTEMP=val>
```

or

```
Cxxx n1 n2 C='equation' CTYPE = 0 or 1
```

If a model is chosen for the capacitor, then the specification of CAPVAL is optional.

- **Cxxx**: capacitor element name. Must begin with a “C”, which can be followed by up to 15 alphanumeric characters.
- **n1**: positive terminal node name
- **n2**: negative terminal node name
- **mname**: model name
- **C**: capacitance in farads at room temperature
- **cval**: capacitance value. Can be a value or parameter that can be evaluated.
- **TC1**: first order temperature coefficient
Using Passive Devices

Using the Capacitor Element

\(TC2\) second order temperature coefficient

\(M\) multiplier used to simulate multiple parallel devices. Default=1.0.

\(W\) capacitor width

\[W_{\text{scaled}} = W \cdot \text{SHRINK} \cdot \text{SCALE} \ (\text{option})\]

\(L\) capacitor length

\[L_{\text{scaled}} = L \cdot \text{SHRINK} \cdot \text{SCALE} \ (\text{option})\]

\(DTEMP\) element temperature difference with respect to circuit temperature. Default=0.0.

\(C=\text{equation}\) The capacitor value can be described as a function of any node voltages, branch currents, and any independent variables such as time, frequency (Hertz), or temperature.
Using the Capacitor Element

CTYPE
If capacitance C is a function of v(n1, n2), set CTYPE=0. If C is not a function of v(n1, n2), set CTYPE=1. The capacitance charge is calculated differently for the two types. CTYPE must be set properly to provide correct simulation results. C as a function of multiple variables is not recommended. Default=0.

SCALE
element scale factor

\[
C_{eff} = C \cdot SCALE\ (element) \cdot M
\]

IV
initial voltage across capacitor in volts. This value is used as the DC operating point voltage.

To avoid syntactic conflicts, if a capacitor model exists using the same name as a parameter for cval in the element statement, the model name is taken. In the following example, C1 assumes that CAPXX refers to the model and not the parameter.

```
.PARAMETER CAPXX=1
C1 1 2 CAPXX
.MODEL CAPXX C CAP=1
```
Using Passive Devices

capacitance parameters

Table 12-5: Capacitance Parameters

<table>
<thead>
<tr>
<th>Name(Alias)</th>
<th>Units</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP</td>
<td>F</td>
<td>0</td>
<td>default capacitance value</td>
</tr>
<tr>
<td>CAPSW</td>
<td>F/m</td>
<td>0</td>
<td>sidewall fringing capacitance</td>
</tr>
<tr>
<td>COX</td>
<td>F/m²</td>
<td>0</td>
<td>bottomwall capacitance</td>
</tr>
</tbody>
</table>
| DEL | m | 0 | difference between drawn width and actual width or length
| | | | DELeff = DEL ⋅ SCALM |
| DI | | 0 | relative dielectric constant |
| L | m | 0 | default length of capacitor
| | | | Lscaled = L ⋅ SHRINK ⋅ SCALM |
| SHRINK | | 1 | shrink factor |
| TC1 | 1/deg | 0 | first temperature coefficient for capacitance |
| TC2 | 1/deg²| 0 | second temperature coefficient for capacitance |
| THICK | m | 0 | insulator thickness |
| TREF | deg C | TNOM | reference temperature |
| W | m | 0 | default width of capacitor
| | | | Wscaled = W ⋅ SHRINK ⋅ SCALM |

Parameter Limit Checking

HSPICE writes a warning message to the output listing file if a capacitive element value exceeds 0.1 farad. This feature eases identification of elements with missing units or wrong values, particularly those in automatically produced netlists.

Effective Capacitance Calculation

A model can be associated with a capacitor in HSPICE. You can specify some of the parameters in both the element and model descriptions. The element
values override the model values. The option SCALE and the model parameter SHRINK scale the element width and length. The option SCALM and the model parameter SHRINK scale the model width and length.

The effective width and length are calculated as follows:

\[
W_{eff} = W_{scaled} - 2 \cdot DE_{eff}
\]

\[
L_{eff} = L_{scaled} - 2 \cdot DE_{eff}
\]

If the element capacitance \(C \) is specified:

\[
CAP_{eff} = C \cdot SCALE(\text{element}) \cdot M
\]

Otherwise, the capacitance is calculated from the \(L_{eff}, W_{eff} \) and \(COX \).

\[
\Delta P_{eff} = M \cdot SCALE(\text{element}) \cdot [L_{eff} \cdot W_{eff} \cdot COX + 2 \cdot (L_{eff} + W_{eff}) \cdot CAPS
\]

If \(COX \) is not specified, but \(THICK \) is not zero, then:

\[
COX = \frac{DI \cdot \varepsilon_0}{THICK} \quad \text{if } DI \text{ not zero}
\]

or

\[
COX = \frac{\varepsilon_{ox}}{THICK} \quad \text{if } DI=0
\]

where

\[
\varepsilon_0 = 8.8542149 \times 10^{-12} \, \text{farad/meter}
\]

\[
\varepsilon_{ox} = 3.453148 \times 10^{-11} \, \text{farad/meter}
\]

If only model capacitance \(CAP \) is specified, then
Using Passive Devices

Capacitance Temperature Equation

The capacitance as a function of temperature is calculated as follows:

\[
C(t) = C \cdot (1.0 + TC1 \cdot \Delta t + TC2 \cdot \Delta t)
\]

- \(\Delta t\) is the element temperature in degrees Kelvin.
- \(t\) is the circuit temperature + DTEMP + 273.15.
- \(tnom\) is the nominal temperature in degrees Kelvin, calculated as \(tnom = 273.15 + TNOM\).

Polynomial Capacitor Elements

General form

\[
Cxxx \ n1 \ n2 \ POLY \ c0 \ c1 \ ... \ <IC=v>
\]

- \(Cxxx\) is the capacitor element name, which must begin with a “C”, followed by up to 15 alphanumeric characters.
- \(n1, n2\) are the node names.
- \(POLY\) is a keyword identifying the capacitor as nonlinear polynomial, reserved for internal use.
- \(c0, c1, ...\) are coefficients of a polynomial describing the element value. The capacitance is described as a function of the voltage across the capacitor. The value is:

\[
\text{capacitance} = c0 + c1 \cdot v + c2 \cdot v^2 + \ldots
\]
initial voltage across capacitor in volts. If the input netlist file contains a .IC statement, the initial conditions in the .IC statement override initial conditions specified in element statements.
Using the Linear Inductor Element

General form
Lxxx n1 n2 L=val <TC1=val > <TC2=val> <SCALE=val> <IC=val>
<M=val> <DTEMP=val> <R=val>

or
Lxxx n1 n2 L=val <TC1=val > <TC2=val> <SCALE=val>
<IC=val> <M=val> <DTEMP=val> + <R=val>

or
Lxxx n1 n2 L='equation’ LTYPE = 0 or 1 <R=val>

Lxxx inductor element name. The name must begin with an “L”, followed by up to 15 alphanumeric characters.

n1 positive terminal node name

n2 negative terminal node name

TC1 first order temperature coefficient

TC2 second order temperature coefficient

SCALE element scale factor. Default=1.0.

IC initial current through the inductor in amperes

L inductance in henries at room temperature

Leff = L ⋅ SCALE (element) / M
Using the Linear Inductor Element

\[M \] multiplier used to simulate multiple paralleled inductors. Default=1.0.

\[DTEMP \] element and circuit temperature difference. Default=0.0

\[R \] resistance in ohms of the inductor element

The inductor value can be described as a function of any node voltages, branch currents, and any independent variables such as TIME, frequency (HERTZ), or temperature (TEMPER). The type of variable \(L \) depends upon is indicated by the parameter “\(LTYPE \)”. Most commonly \(L \) depends upon \(I(Lxxx) \), which is assumed with the default of \(LTYPE=0 \) as explained below.

\[LTYPE \] If inductance \(L \) is a function of \(I(Lxxx) \), set \(LTYPE \) to 0. Otherwise, set \(LTYPE \) to 1. The inductance flux is calculated differently depending on the value of \(LTYPE \). \(LTYPE \) must be set properly to provide correct simulation results. Defining \(L \) as function of multiple variables is not recommended. Default=0.
Example
LLINK 42 69 1UH
LSHUNT 23 51 10U .001 0 15 IC=15.7MA

Parameter Limit Checking
HSPICE writes a warning message to the output listing file if an inductive element value exceeds 0.1 henry. This feature eases identification of elements with missing units or wrong values, particularly those in automatically produced netlists.

Inductance Temperature Equation
The effective inductance as a function of temperature is provided by the following equation:

\[L'(t) = L \cdot (1.0 + TC1 \cdot \Delta t + TC2 \cdot \Delta t) \]

\[\Delta t = t - t_{\text{nom}} \]

\[t = \text{element temperature in degrees Kelvin} \]

\[t_{\text{nom}} = \text{nominal temperature in degrees Kelvin} \]

\[t = \text{circuit temp} + \text{DTEMP} + 273.15 \]

\[t_{\text{nom}} = 273.15 + \text{TNOM} \]
Mutual Inductor Element

General form

\[Kxxx \text{ Lyyy Lzzz kvalue} \]

or

\[Kxxx \text{ Lyyy Lzzz K=val} \]

- **Kxxx**: mutual (coupled) inductor element name. Must begin with a “K”, which can be followed by up to 15 alphanumeric characters.
- **Lyyy, Lzzz**: element names of coupled inductors
- **kvalue, K**: the coefficient of mutual coupling. The absolute value of kvalue must be greater than 0 and less than or equal to 1. If kvalue is negative, the direction of coupling is reversed. This reversal is equivalent to reversing the polarity of either of the coupled inductors. If kvalue is a parameter, the syntax of kvalue should be K=parameter.

Example

\[K43 \text{ LAA LBB 0.9999} \]
\[KXFTR \text{ L1 L4 K=0.87} \]

Using the “dot” convention, a “dot” appears on the first node of each inductor.

Use the mutual inductor statement to specify coupling between more than two inductors. Also, automatically calculate second order coupling effects using the GENK and KLIM options. For example, if you specify three inductors, HSPICE automatically calculates the coupling between L3 and L1, if the coupling between L1, L2 and L2, L3 is given.

Example

\[K1 \text{ L1 L2 .98} \]
\[K2 \text{ L2 L3 .87} \]
Using Passive Devices

Create coupling between inductors with a separate coupling element. Specify mutual inductance between two inductors by the coefficient of coupling, k-value, defined by the equation:

$$ K = \frac{M}{(L_1 \cdot L_2)^{1/2}} $$

L_1, L_2 the inductances of the two coupled inductors

M the mutual inductance between the inductors

Linear branch relation for transient analysis:

$$ v_1 = L_1 \frac{di_1}{dt} + M \frac{di_2}{dt} $$

$$ v_2 = M \frac{di_1}{dt} + L_2 \frac{di_2}{dt} $$

Linear branch relation for AC analysis:

$$ V_1 = (j \cdot \omega \cdot L_1) \cdot I_1 + (j \cdot \omega \cdot M) \cdot I_2 $$

$$ V_2 = (j \cdot \omega \cdot M) \cdot I_1 + (j \cdot \omega \cdot L_2) \cdot I_2 $$

Note: You must define an inductor reference by a mutual inductor statement, otherwise HSPICE issues an error message and terminates.
Polynomial Inductor Element

General form

\[Lxxx \ n1 \ n2 \ POLY \ c0 \ c1 \ ... \ <IC=val> \]

- **Lxxx**: inductor element name. Must begin with an “L”, which can be followed by up to 15 alphanumeric characters.
- **n1, n2**: node names
- **POLY**: keyword to identify the inductor as nonlinear polynomial
- **c0 c1 ...**: coefficients of a polynomial describing the inductor value
- **IC**: initial current through the inductor in amperes

The inductance is described as a function of the instantaneous current, \(i \), through the inductor. The value is computed as:

\[lval = c0 + c1 \cdot i + c2 \cdot i^2 \]
Using Magnetics

You can use several elements and models to analyze switching regulators, transformers, and mutual inductive circuits. These elements include magnetic winding elements, mutual cores, and magnetic core models.

You can use the HSPICE saturable core model for chokes, saturable transformers, and linear transformers. To use the model, you must provide a mutual core statement, specify the core parameters with a .MODEL statement, and provide specification of the windings around each core element with a magnetic winding element statement.

Magnetic Winding Element

General form

\[
Lxxx \text{ } n1 \text{ } n2 \text{ } NT=val <R=val> <IC=val>
\]

- \(Lxxx\): the name of the winding, which must begin with an “L” followed by up to 15 alphanumeric characters
- \(n1, n2\): node names
- \(NT\): number of turns
- \(R\): DC resistance
- \(IC\): the initial current through the inductor in amperes. The “dot” convention is used to determine the direction of the turns.

Example

\[
L3 \text{ } 4 \text{ } 5 \text{ } NT=50 \text{ } R=0.01
LDRIVE \text{ } 1 \text{ } 2 \text{ } NT=100
\]
Mutual Core Statement

General form

Kxxx Lyyy <Lzzz
... <Laaa>>
mname
<MAG=val>

Kxxx the saturable core element name. Must begin with a
“K”, which can be followed by up to 15
alphanumeric characters.

Lyyy, Lzzz. the names of the windings about the Kxxx element.
At least one winding must

Laaa be specified. There is no limit to the total number
of windings. The “dot”

convention is used to determine the direction of the

turns.

mname model name reference

MAG initial magnetization of the core. Can be set to -1, 0
or +1, where +1, -1 correspond to positive or
negative values of model parameter BS in model
“mname”. Default=0.0.

Example

K2 L1 CHoke
K5 L3 L5 L7 T1 MAG=1
Magnetic Core Model

General form

\.MODEL mname L (<pname1=val1>...)
mname model name. Elements refer to the model by this name.
L identifies a saturable core model
pname1 each saturable core model can include several model parameters.

Example

\.MODEL CHOKE L(BS=12K BR=10K HS=1 HCR=.2 HC=.3 AC=1. LC=3.)

Obtain the core model parameters from the manufacturer’s data. Figure 12-1: illustrates the required b-h loop parameters for the model. The model includes core area, length, and gap size, as well as the core growth time constant.

Example

*file: bhloop.sp b-h loop nonlinear magnetic core transformer
* plot in metawaves i(l1 versus 22 to get b-h loop
.option acct method=gear post rmax=.05
.tran 1m 25m
.probe mu=lx0(k1) h=lx1(k1) b=lx2(k1) L1=lv1(l1) L2=lv1(l2) i(l1) k1 l1 l2 mag2 l1 1 0 nt=20 l2 2 0 nt=20 r11 l1 l1 1 v11 l1 0 sin (0 5 60 r22 2 22 1 c22 22 0 1 .model mag2 l bs=6k br=3k hs=1 hcr=.1 hc=.8 ac=1 lc=16 .end
Magnetic Core Model Parameters

The magnetic core model parameters are described in Table 12-6.

Table 12-6: Definitions of Magnetic Core Model Parameters

<table>
<thead>
<tr>
<th>Name (Alias)</th>
<th>Units</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>cm²</td>
<td>1.0</td>
<td>core area</td>
</tr>
<tr>
<td>BS</td>
<td>Gauss</td>
<td>13000</td>
<td>magnetic flux density at saturation</td>
</tr>
<tr>
<td>BR</td>
<td>Gauss</td>
<td>12000</td>
<td>residual magnetization</td>
</tr>
<tr>
<td>HC</td>
<td>Oersted</td>
<td>0.8</td>
<td>coercive magnetizing force</td>
</tr>
<tr>
<td>HCR</td>
<td>Oersted</td>
<td>0.6</td>
<td>critical magnetizing force</td>
</tr>
<tr>
<td>HS</td>
<td>Oersted</td>
<td>1.5</td>
<td>magnetizing force at saturation</td>
</tr>
<tr>
<td>LC</td>
<td>cm</td>
<td>3.0</td>
<td>core length</td>
</tr>
<tr>
<td>LG</td>
<td>cm</td>
<td>0.0</td>
<td>gap length</td>
</tr>
<tr>
<td>TC</td>
<td>s</td>
<td>0.0</td>
<td>core growth time constant</td>
</tr>
</tbody>
</table>
The Jiles-Atherton ferromagnetic core model is based on domain wall motion, including both bending and translation. The hysteresis-free (anhysteretic) magnetization curve is described by a modified Langevin expression. This leads to

\[m_{an} = M \dot{S} \cdot \left(\coth \left(\frac{h_e}{A} \right) - \frac{A}{h_e} \right) \]

\[h_e = h + \text{ALPHA} \cdot m_{an} \]

where

- \(m_{an} \) is the magnetization level, if domain walls could move freely.
- \(h_e \) is the effective magnetic field.
is the magnetic field.

MS is a model parameter that represents the saturation magnetization.

A is a model parameter that characterizes the shape of the anhysteretic magnetization.

ALPHA is a model parameter that represents the coupling between the magnetic domains.

The above equation generates anhysteretic curves when the model parameter *ALPHA* has a small value. Otherwise, it generates some elementary forms of hysteresis loops, which is not a desirable result. The slope of the curve at 0 can be calculated by

\[
\frac{dm_{an}}{dh} = \frac{1}{3 \cdot \frac{A}{MS} - ALPHA}
\]

The slope must be positive, therefore the denominator of the above equation must be positive. HSPICE generates an error message if the slope becomes negative.

The anhysteretic magnetization represents the global energy state of the material if the domain walls could move freely. But the walls are displaced and bend in the material. If the bulk magnetization *m* is expressed as the sum of an irreversible component due to wall displacement and a reversible component due to domain wall bending, then

\[
\frac{dm}{dh} = \frac{(m_{an} - m)}{K} + C \left(\frac{dm_{an}}{dh} - \frac{dm}{dh} \right)
\]

or

\[
\frac{dm}{dh} = \frac{(m_{an} - m)}{(1 + C) \cdot K} + \frac{C}{1 + C} \cdot \frac{dm_{an}}{dh}
\]

By solving the above differential equation, the bulk magnetization *m* is obtained. The flux density *b* is computed from *m*:

Using Passive Devices

\[b = \mu_0 \cdot (h + m) \]

where \(\mu_0 \), the permeability of free space, is \(4\pi \cdot 10^{-7} \), and the units of \(h \) and \(m \) are in amp/meter. Then the units of \(b \) would be in tesla \(\text{Wb/meter}^2 \).

Core Model Statement

General Form

\[.\text{MODEL mname CORE (LEVEL=1 <keyword = val> ...)} \]

Core Model Parameters

The core model parameters are listed in Table 12-7.

Table 12-7: Magnetic Model Parameter Definitions

<table>
<thead>
<tr>
<th>Name (Alias)</th>
<th>Units</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL</td>
<td></td>
<td>2</td>
<td>model selector. For the Jiles-Atherton model, set LEVEL=1. LEVEL=2, the default, selects the Pheno model, which is the original HSPICE model</td>
</tr>
<tr>
<td>AREA, (AC)</td>
<td>cm(^2)</td>
<td>1</td>
<td>mean of magnetic core cross section. AC is an alias of AREA</td>
</tr>
<tr>
<td>PATH, (LC)</td>
<td>cm</td>
<td>3</td>
<td>mean of magnetic core path length. LC is an alias of PATH</td>
</tr>
<tr>
<td>MS</td>
<td>amp/meter</td>
<td>1e6</td>
<td>magnetization saturation</td>
</tr>
<tr>
<td>A</td>
<td>amp/meter</td>
<td>1e3</td>
<td>characterizes the shape of the anhysteretic magnetization</td>
</tr>
<tr>
<td>ALPHA</td>
<td></td>
<td>1e-3</td>
<td>represents the coupling between the magnetic domains</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>0.2</td>
<td>domain flexing parameter</td>
</tr>
<tr>
<td>K</td>
<td>amp/meter</td>
<td>500</td>
<td>domain anisotropy parameter</td>
</tr>
</tbody>
</table>
Magnetic Core Outputs

Table 12-8: Magnetic Core Element Outputs

<table>
<thead>
<tr>
<th>Output Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LX1</td>
<td>magnetic field, h (oersted)</td>
</tr>
<tr>
<td>LX2</td>
<td>magnetic flux density, b (gauss)</td>
</tr>
<tr>
<td>LX3</td>
<td>slope of the magnetization curve, $\frac{am}{dh}$</td>
</tr>
<tr>
<td>LX4</td>
<td>bulk magnetization, m (amp/meter)</td>
</tr>
<tr>
<td>LX5</td>
<td>slope of the anhysteretic magnetization curve, $\frac{an}{dh}$</td>
</tr>
<tr>
<td>LX6</td>
<td>anhysteretic magnetization, m_{an} (amp/meter)</td>
</tr>
<tr>
<td>LX7</td>
<td>effective magnetic field, h_e (amp/meter)</td>
</tr>
</tbody>
</table>

Jiles-Atherton Model Examples

Example 1 – Effects of Varying the ALPHA, A, and K Parameters

This example demonstrates the effects of the ALPHA, A, and K model parameters on the b-h curve.

Table 12-2 shows the b-h curves for three values of ALPHA.

Table 12-3 shows the b-h curves for three values of A.

Table 12-4 shows the b-h curves for three values of K.

HSPICE Input File

* Test the Jiles-Atherton model
 .options post
 * the following analysis studies the effect of parameter ALPHA.
 *.param palpha=0.0 pk=0.0 pc=0.0 pa=26
Using Passive Devices

*tran 0.01 1 sweep palpha poi 3 0.0 5.0e-5 1.0e-4
* the following analysis studies the effects of parameter A.
*param palpha=0.0 pk=0.0 pc=0.0 pa=26
*tran 0.01 1 sweep pa poi 3 10 26 50
* the following analysis studies the effects of parameter K.
.param palpha=0.0 pk=5 pc=1.05 pa=26
.tran 0.01 1.25 $ sweep pk poi 2 5 50
rl 1 2 1
l1 2 0 nt=50
k1 l1 ct
igen 0 1 sin(0 0.1a 1hz 0)
.model ct core level=1 ms=420k k=pk c=pc a=pa + alpha=palpha area=1.17 path=8.49
.probe b=lx2(k1) h=lx1(k1) i(r1) v(1)
.probe dmdh=lx3(k1) m=lx4(k1) man=lx6(k1)
.probe l=lv1(l1)
.alter
.param pk=50
.end
Plots of the b-h Curve

Figure 12-2: Variation of Anhysteretic b-h Curve: the Slope Increases as ALPHA Increases

Figure 12-3: Variation of Anhysteretic b-h Curve: the Slope Decreases as A Increases
Example 2 – Discontinuities in Inductance Due to Hysteresis

This example creates multiloop hysteresis b-h curves for a magnetic core. Discontinuities in the inductance, which is proportional to the slope of the b-h curve, can cause convergence problems. Figure 12-5 demonstrates the effects of hysteresis on the inductance of the core.

HSPICE Input File

```plaintext
*file tj2b.sp Multiloop hysteresis test using jiles-atherton model.
.options post
.tran 0.01 5
rl 1 2 1
ll 2 0 nt=50
kl 11 ct
igen 0 10 sin(0 0.1a 1hz 0 )
ipls 0 20 pwl(0,0 1m,0.5 1s,0.5 + 1.001,1.0 2.000,1.0 + 2.001,1.5 3.000,1.5 + 3.001,2.0 4.000,2.0 + 4.001,2.5 5.000,2.5)
```

Figure 12-4: Variation of Hysteretic b-h Curve: as K Increases, the Loop Widens and Rotates Clockwise
Using Magnetics

```
 gigen 0 1 cur='v(10)*v(20)'
 rpls 0 20 1
 rsin 0 10 1

 .model ct core level=1 ms=420k k=18 c=1.05 a=26
 + alpha=2e-5 area=1.17 path=8.49

 .probe b=lx2(k1) h=lx1(k1) i(r1) v(l)
 .probe dmdh=lx3(k1) m=lx4(k1) dmandh=lx5(k1)
 + man=lx6(k1)
 .probe l=lv1(l1) heff=lx7(k1)
 .end
```

Plots of the Hysteresis Curve and Inductance

Figure 12-5: Hysteresis Curve and Inductance of a Magnetic Core

Example 3 – Optimization of Parameter Extraction

This example demonstrates the usage of optimization in the parameter extraction of the Jiles-Atherton model. Figure 12-6: shows the plots of the core output before and after optimization.
HSPICE Input File

*file tj_opt.sp for Jiles-Atherton model parameter optimization.

.options post
+ delmax=5m
.param palpha=0.0
.param pms= opt1(150k,100k,500k)+ pa =opt1(10,5,50)+ pk=opt1(5,1,50)+ pc= opt1(1,0,3)
.tran 0.01 1.0
.tran 0.01 1.0 sweep+ optimize=opt1 results=bsat,br,hc model=optmod
.model optmod opt itropt=40+ relin=1e-4 relout=1e-6
.meas bsat find par(`abs(lx2(k1))`) when lx1(k1)=5.0 goal=3.1k
.meas br find par(`abs(lx2(k1))`) when lx1(k1)=0 td=.25 goal=1k
.meas hc find par(`abs(lx1(k1))`) when lx2(k1)=0 td=.25 goal=.4
rl 1 2 0.01
dl 2 0 nt=20
k1 l1 ct
igen 0 1 sin(0 2a 1hz 0)
.model ct core level=1 ms=pms k=pk c=pc a=pa+ alpha=palpha area=1.17 path=8.49
.probe b=lx2(k1) h=lx1(k1) i(rl) v(1)
.probe dmdh=lx3(k1) m=lx4(k1) dmandh=lx5(k1)+ man=lx6(k1)
.probe l=lv1(l1) heff=lx7(k1)
.end
Analysis Results Listing

****** transient analysis tnom= 25.000 temp= 25.000
optimization results
residual sum of squares = 1.043893E-12
norm of the gradient = 1.411088E-06
marquardt scaling parameter = 1.267004E-04
no. of function evaluations = 30
no. of iterations = 11
optimization completed

norm of gradient < grad= 1.0000E-06 on last iterations

**** optimized parameters opt1

.param pms = 267.5975k
.param pa = 27.8196
.param pk = 37.2947
.param pc = 316.4197m

*** Measure results
bsat = 3.1000E+03
br = 9.9999E+02
hc = 3.9880E-01
Using Passive Devices

Figure 12-6: Output Curves Before Optimization (top), and After Optimization (bottom)