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Chapter 26

Modeling Filters and Networks

Applying Kirchhoff’s laws to circuits containing energy storage elements results
in simultaneous differential equations in the time domain that must be solved to
analyze the circuit’s behavior. The solution of any equation of higher than first
order can be difficult, and some driving functions cannot be solved easily by
classical methods.

In both cases, the solution might be simplified using Laplace transforms to
convert time domain equations containing integral and differential terms to
algebraic equations in the frequency domain.

This chapter covers the following topics:

■ Understanding Transient Modeling

■ Using G and E Elements

■ Modeling with Laplace and Pole-Zero

■ Modeling Switched Capacitor Filters
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Understanding Transient Modeling
The Laplace transform method also provides an easy way of relating a circuit’s
behavior in time and frequency-domains, facilitating simultaneous work in those
domains.

The performance of the algorithm Star-Hspice uses for Laplace and pole/zero
transient modeling is better than the performance of the Fast Fourier Transform
(FFT) algorithm. Laplace and pole/zero transient modeling is invoked by using
a LAPLACE or POLE function call in a source element statement.

Laplace transfer functions are especially useful in top-down system design,
using ideal transfer functions instead of detailed circuit designs. Star-Hspice also
allows you to mix Laplace transfer functions with transistors and passive
components. Using this capability, a system may be modeled as the sum of the
contributing ideal transfer functions, which can be progressively replaced by
detailed circuit models as they become available. Laplace transfer functions are
also conveniently used in control systems and behavioral models containing
nonlinear elements.

Using Laplace transforms can reduce the long simulation times (as well as
design time) of large interconnect systems, such as clock distribution networks,
for which you can use methods such as asymptotic waveform evaluation (AWE)
to create a Laplace transfer function model. The AWE model can represent the
large circuit with just a few poles. You can input these poles through a Laplace
transform model to closely approximate the delay and overshoot characteristics
of many networks in a fraction of the original simulation time.

Pole/zero analysis is important in determining the stability of the design. The
POLE function in Star-Hspice is useful when the poles and zeros of the circuit
are provided, or they can be derived from the transfer function. (You can use the
Star-Hspice .PZ statement to find poles and zeros. See “Using Pole/Zero
Analysis” on page 24-3 for information about the .PZ statement).
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Frequency response, an important analog circuit property, is normally specified
as a ratio of two complex polynomials (functions of complex frequencies) with
positive real coefficients. Frequency response can be given in the form of the
locations of poles and zeros or can be in the form of a frequency table.

Complex circuits are usually designed by interconnecting smaller functional
blocks of known frequency response, either in pole/zero or frequency table form.
For example, you can design a band-reject filter by interconnecting a low-pass
filter, a high-pass filter, and an adder. The designer should study the function of
the complex circuit in terms of its component blocks before designing the actual
circuit. After testing the functionality of the component blocks, they can be used
as a reference in using optimization techniques to determine the complex
element’s value.
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Using G and E Elements
This section describes how to use the G and E elements.

  Laplace Transform Function Call
Use the Star-Hspice G and E elements (controlled behavioral sources) as linear
functional blocks or elements with specific frequency responses in the following
forms:

■ Laplace transforms

■ Pole/zero modeling

■ Frequency response table

The frequency response is called the impulse response and is denoted by H(s),
where s is a complex frequency variable ( ). In Star-Hspice, the
frequency response is obtained by performing an AC analysis with AC=1 in the
input source (the Laplace transform of an impulse is 1). The input and output of
the G and E elements with specified frequency response are related by the
expression:

where X, Y and H are the input, the output, and the transfer function at frequency
f.

For AC analysis, the frequency response is determined by the above relation at
any frequency. For operating point and DC sweep analysis, the relation is the
same, but the frequency is zero.

The transient analysis is more complicated than the frequency response. The
output is a convolution of the input waveform with the impulse response h(t):

s j2πf=

Y j2πf( ) Hj 2πf( ) Xj 2πf( )⋅=

y t( ) x τ( ) h t τ–( ) d⋅ ⋅ τ
∞–

∞

∫=
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In discrete form, the output is

 ,  k = 0, 1, 2, ...

where the h(t) can be obtained from H(f) by the inverse Fourier integral:

The inverse discrete Fourier transform is given by

,  m = 0, 1, 2, ..., N-1

where N is the number of equally spaced time points and∆ is the time interval
or time resolution.

For the frequency response table form (FREQ) of the LAPLACE function, Star-
Hspice‘s performance-enhanced algorithm is used to convert H(f) to h(t). This
algorithm requires N to be a power of 2. The frequency point fn is determined by

 ,     n = 0, 1, 2, ..., N-1

where n > N/2 represents the negative frequencies. The Nyquist critical
frequency is given by

Since the negative frequencies responses are the image of the positive ones, only
N/2 frequency points are required to evaluate N time points of h(t). The larger fc
is, the more accurate the transient analysis results are. However, for large fc, the
∆ becomes smaller, and computation time increases. The maximum frequency
of interest depends on the functionality of the linear network. For example, in a

y k∆( ) ∆ x m∆( ) h k m–( ) ∆⋅[ ]⋅
m 0=

k

∑=

h t( ) H f( ) ej2πft⋅ df⋅
∞–

∞

∫=

h m∆( ) 1
N ∆⋅
------------ H f n( ) e

j2πnm
N

-----------------
⋅

n 0=

N 1–

∑=

f n
n

N ∆⋅
------------=

f c f N/2
1

2 ∆⋅
-----------= =
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low-pass filter, fc can be set to the frequency at which the response drops by 60
dB (a factor of 1000).

Once fc is selected or calculated, then ∆ can be determined by

Notice the frequency resolution

is inversely proportional to the maximum time (N⋅∆) over which h(t) is
evaluated. Therefore, the transient analysis accuracy also depends on the
frequency resolution or the number of points (N).You can specify the frequency
resolution DELF and maximum frequency MAXF in the G or E element
statement. N is calculated by 2⋅MAXF/DELF. Then, N is modified to be a power
of 2. The effective DELF is determined by 2⋅MAXF/N to reflect the changes in
N.

  Laplace Transform – LAPLACE Function
The syntax is:

Transconductance H(s):
Gxxx n+ n- LAPLACE in+ in-   k0, k1, ..., kn / d0, d1, ..., dm
+ <SCALE=val> <TC1=val> <TC2=val> <M=val>

Voltage Gain H(s):
Exxx n+ n- LAPLACE in+ in-   k0, k1, ..., kn / d0, d1, ..., dm
<SCALE=val> <TC1=val> <TC2=val>

H(s) is a rational function in the following form:

H f c( )
Hmax

1000
---------------=

∆ 1
2 f c⋅
-------------=

∆f f 1
1

N ∆⋅
------------= =
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All the coefficients k0, k1, ..., d0, d1, ..., can be parameterized.

Examples

Glowpass  0  out  LAPLACE  in  0   1.0 / 1.0  2.0  2.0  1.0
Ehipass    out  0    LAPLACE  in  0   0.0,0.0,0.0,1.0 /
1.0,2.0,2.0,1.0

The Glowpass element statement describes a third-order low-pass filter with the
transfer function

The Ehipass element statement describes a third-order high-pass filter with the
transfer function

  Laplace Transform – Pole-Zero Function
General Forms

Transconductance H(s):
Gxxx n+ n- POLE in+ in- a αz1, fz1, ..., αzn, fzn / b, αp1, fp1, ..., αpm, fpm

+ <SCALE=val> <TC1=val> <TC2=val> <M=val>

Voltage Gain H(s):
Exxx n+ n- POLE in+ in- a αz1, fz1, ..., αzn, fzn / b, αp1, fp1, ..., αpm, fpm

+ <SCALE=val> <TC1=val> <TC2=val>

H(s) in terms of poles and zeros is defined by

H s( )
k0 k1s … knsn+ + +

d0 d1s … dmsm+ + +
----------------------------------------------------=

H s( ) 1
1 2s 2s2 s3+ + +
----------------------------------------=

H s( ) s3

1 2s 2s2 s3+ + +
----------------------------------------=
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Notice the complex poles or zeros are in conjugate pairs. In the element
description, only one of them is specified, and the program includes the
conjugate. The a, b,α, and f values can be parameterized.

Examples

Ghigh_pass 0 out POLE in 0 1.0 0.0,0.0 / 1.0 0.001,0.0
Elow_pass out 0 POLE in 0 1.0 / 1.0, 1.0,0.0 0.5,0.1379

The Ghigh_pass statement describes a high-pass filter with transfer function

The Elow_pass statement describes a low-pass filter with transfer function

  Laplace Transform- Frequency Response Table
The syntax is:

Transconductance H(s):
Gxxx  n+ n- FREQ in+ in-  f1, a1, φ1, ..., fi, ai, φ1

+ <DELF=val> <MAXF=val> <SCALE=val> <TC1=val>

+ <TC2=val> <M=val> <LEVEL=val>

Voltage Gain H(s):
Exxx n+ n- FREQ in+ in- f1, a1, φ1, ..., fi, ai, φ1

+ <DELF=val> <MAXF=val> <SCALE=val> <TC1=val> <TC2=val>

Each fi is a frequency point in hertz, ai is the magnitude in dB, andφ1 is the phase
in degrees. At each frequency the network response, magnitude, and phase are
calculated by interpolation. The magnitude (in dB) is interpolated

H s( )
a s αz1 j2π f z1–+( )… s αzn j2π f zn–+( ) s αzn j2π f zn+ +( )⋅

b s αp1 j2π f p1–+( )… s αpm j2π f pm–+( ) s αpm j2π f pm+ +( )⋅
----------------------------------------------------------------------------------------------------------------------------------------------------------------=

H s( ) 1.0 s 0.0 j 0.0⋅+ +( )⋅
1.0 s 0.001 j 0.0⋅+ +( )⋅
-----------------------------------------------------------=

H s( ) 1.0
1.0 s 1+( ) s 0.5 j2π 0.1379⋅+ +( ) s 0.5 j2π 0.1379⋅( )–+( )⋅
-----------------------------------------------------------------------------------------------------------------------------------------------------=
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logarithmically as a function of frequency. The phase (in degrees) is interpolated
linearly as a function of frequency.

Example

Eftable  output   0  FREQ  input   0
+  1.0k   -3.97m   293.7
+  2.0k   -2.00m   211.0
+  3.0k   17.80m   82.45
+  .........
+ 10.0k  -53.20    -1125.5

The first column is frequency in hertz, the second is magnitude in dB, and third
is phase in degrees. The LEVEL must be set to 1 for a high-pass filter, and the
last frequency point must be the highest frequency response value that is a real
number with zero phase. The frequency, magnitude, and phase in the table can
be parameterized.

  Element Statement Parameters
These keywords are common to the three forms, Laplace, pole-zero, and
frequency response table described above.

DELF, DELTA frequency resolution∆f. The inverse of DELF is the time
window over which h(t) is calculated from H(s). The smaller
DELF is, the more accurate the transient analysis, and the
longer the CPU time. The number of points, N, used in the
conversion of H(s) to h(t) is N=2⋅MAXF/DELF. Since N
must be a power of 2, the DELF is adjusted. The default is 1/
TSTOP.

H j2πf( )
ai ak–

f ilog f klog–
--------------------------------- 

  flog f ilog–( ) ai+=

H j2πf( )∠
φi φk–

f i f k–
---------------- 

  f f i–( ) φi+=
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FREQ keyword to indicate that the transfer function is described by
a frequency response table. Do not use FREQ as a node name
in a G or E element.

LAPLACE keyword to indicate the transfer function is described by a
Laplace transform function. Do not use LAPLACE as a node
name on a G or E element.

LEVEL used only in elements with frequency response table. This
parameter must be set to 1 if the element represents a high-
pass filter.

M  G element multiplier. This parameter is used to representM
G elements in parallel. Default is 1.

MAXF, MAX maximum or the Nyquist critical frequency. The larger the
MAXF the more accurate the transient results and the longer
is the CPU time. The default is . Thee
parameters are applicable only when the FREQ parameter is
also used.

POLE keyword to indicate the transfer function is described by the
pole and zero location. Do not use POLE as a node name on
a G or E element.

SCALE element value multiplier

TC1,TC2 first and second order temperature coefficients. The default
is zero. The SCALE is updated by temperature:

Note: Pole/zero analysis is not allowed when the data file contains elements
with frequency response specifications
If you include a MAXF=<par> specification in a G or Element
statement, Star-Hspice issues a warning that MAXF is ignored. This is
normal.

1024 DELF⋅

ALEeff SCALE 1 TC1 ∆t TC2 ∆⋅+⋅+(⋅=
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  Laplace Band-Reject Filter
This example models an active band-reject filter1 with 3-dB points at 100 and
400 Hz and greater than 35 dB of attenuation between 175 and 225 Hz. The
band-reject filter is made up of low-pass and high-pass filters and an adder. The
low-pass and high-pass filters are fifth order Chebyshev with a 0.5-dB ripple.

Figure 26-1: Band-Reject Filter

Example Band-Reject Filter
BandstopL.sp band_reject filter
.OPTIONS PROBE POST=2
.AC DEC 50 10 5k
.PROBE AC VM(out_low) VM(out_high) VM(out)
.PROBE AC VP(out_low) VP(out_high) VP(out)
.TRAN .01m 12m
.PROBE V(out_low) V(out_high) V(out)
.GRAPH v(in)  V(out)
Vin in 0 AC 1 SIN(0,1,250)

Band_Reject Filter Circuit
Elp3 out_low3  0  LAPLACE  in 0
+ 1 / 1 6.729m 15.62988u 27.7976n
Elp  out_low   0  LAPLACE  out_low3 0
+ 1 / 1 0.364m 2.7482u
Ehp3 out_high3 0  LAPLACE  in 0
+ 0,0,0,9.261282467p /
+ 1,356.608u,98.33419352n,9.261282467p
Eph  out_high  0  LAPLACE  out_high3 0

Low-Pass

High-Pass

Input Output
Σ
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+ 0 0 144.03675n / 1 83.58u 144.03675n
Eadd   out 0  VOL=’-V(out_low) - V(out_high)’
Rl out 0 1e6
.END

Figure 26-2: Frequency Response of the Band-Reject Filter
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Figure 26-3: Transient Response of the Band-Reject Filter to a 250 Hz
Sine Wave

  Laplace Low-Pass Filter
This example simulates a third-order low-pass filter with a Butterworth transfer
function, comparing the results of the actual circuit and the functional G element
with third-order Butterworth transfer function for AC and transient analysis.

Figure 26-4: Third-Order Active Low-Pass Filter

In
Out

1 1

1
1.392F 0.2024F

3.546F

+

−
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The third-order Butterworth transfer function that describes the above circuit is:

The following is the input listing of the above filter. Notice the pole locations are
parameterized on the G element. Also, only one of the complex poles is
specified. The conjugate pole is derived by the program. The output of the circuit
is node “out” and the output of the functional element is “outg”.

Example Third-Order Low-Pass Butterworth Filter
Low_Pass.sp 3rd order low-pass Butterworth
.OPTIONS  POST=2 PROBE INTERP=1 DCSTEP=1e8
.PARAM a=1.0 b=1.0 ap1=1.0 fp1=0.0 ap2=0.5 fp2=0.1379
.AC DEC 25 0.01 10
.PROBE AC VDB(out) VDB(outg) VP(out) VP(outg)
.TRAN .5 200
.PROBE V(in) V(outg) V(out)
.GRAPH  V(outg) V(out)
VIN in 0  AC 1   PULSE(0,1,0,1,1,48,100)
* 3rd order low-pass described by G element
Glow_pass 0 outg POLE in 0 a / b ap1,fp1 ap2,fp2
Rg outg 0 1

Circuit Description
R1 in 2 1
R2 2  3 1
R3 3  4 1
C1 2  0 1.392
C2 4  0 0.2024
C3 3  out 3.546
Eopamp out 0   OPAMP  4 out
.END

H s( ) 1.0
1.0 s 1+( ) s 0.5 j2π 0.1379⋅+ +( ) s 0.5 j2π 0.1379⋅( )–+( )⋅
-----------------------------------------------------------------------------------------------------------------------------------------------------=
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Figure 26-5: Frequency Response of Circuit and Functional Element
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Figure 26-6: Transient Response of Circuit and Functional Element to
a Pulse
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Modeling with Laplace and Pole-Zero

  The Laplace Transform (LAPLACE) Function
There are two forms of the Star-Hspice LAPLACE function call, one for
transconductance and one for voltage gain transfer functions. See “Using G and
E Elements” on page -4 for the general forms and descriptions of the parameters.

General Form of the Transfer Function

To use the Star-Hspice LAPLACE modeling function, you must find the k0, ...,
kn and d0, ..., dm coefficients of the transfer function. The transfer function is the
s-domain (frequency domain) ratio of the output of a single-source circuit to the
input, with initial conditions set to zero. The Laplace transfer function is
represented by

,

wheres is the complex frequencyj2πf, Y(s) is the Laplace transform of the
output signal, andX(s) is the Laplace transform of the input signal.

Note: In Star-Hspice, the impulse response H(s) is obtained by performing an
AC analysis, with AC=1 representing the input source. The Laplace
transform of an impulse is 1
For an element with an infinite response at DC, such as a unit step
function H(s)=1/s, Star-Hspice uses the value of the EPSMIN option
(the smallest number possible on the platform) for the transfer function
in its calculations.

The general form of the transfer functionH(s) in the frequency domain is

H s( ) Y s( )
X s( )
-----------=

H s( )
k0 k1s … knsn+ + +

d0 d1s … dmsm+ + +
---------------------------------------------------=
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The order of the numerator of the transfer function cannot be greater than the
order of the denominator, except for differentiators, for which the transfer
functionH(s) = ks. All of the transfer function’sk andd coefficients can be
parameterized in the Star-Hspice circuit descriptions.

Finding the Transfer Function

The first step in determining the transfer function of a circuit is to convert the
circuit to thes-domain by transforming each element’s value into itss-domain
equivalent form.

Tables 26-1 and 26-2 show transforms used to convert some common functions
to thes-domain2,3. The next section provides examples of using transforms to
determine transfer functions.

Table 26-1: Laplace Transforms for Common Source Functions

f(t), t>0 Source Type L { f(t) }= F(s)

δ(t) impulse 1

u(t) step

t ramp

e-at exponential

sin ωt sine

cos ωt cosine

1
s
---

1

s
2

----

1
s a+
-----------

ω
s

2 ω2
+

-----------------

s

s
2 ω2

+
-----------------
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sin(ωt+ θ) sine

cos(ωt+ θ) cosine

sinh ωt hyperbolic sine

cosh ωt hyperbolic cosine

te-at damped ramp

e-at sin ωt damped sine

e-at cos ωt damped cosine

Table 26-2: Laplace Transforms for Common Operations

f(t) L { f(t) } = F(s)

Table 26-1: Laplace Transforms for Common Source Functions

f(t), t>0 Source Type L { f(t) }= F(s)

s θ( )sin ω θ( )cos+

s
2 ω2

+
----------------------------------------------

s θ( )cos ω θ( )sin–

s
2 ω2

+
----------------------------------------------

ω
s

2 ω2
–

-----------------

s

s
2 ω2

–
-----------------

1

s a+( )2
-------------------

ω
s a+( )2 ω2

+
--------------------------------

s a+

s a+( )2 ω2
+

--------------------------------

Kf t( ) KF s( )

f 1 t( ) f 2 t( ) f 3 t( ) …+–+ F1 s( ) F2 s( ) F3 s( ) …+–+

td
d

f t( ) sF s( ) f 0–( )–
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Determining the Laplace Coefficients

The following examples describe how to determine the appropriate coefficients
for the Laplace modeling function call in Star-Hspice.

(u is the step function)

      (u is the step function)

Table 26-2: Laplace Transforms for Common Operations

f(t) L { f(t) } = F(s)

t
2

2

d

d
f t( ) s

2
F s( ) sf 0( )

td
d

f 0–( )––

t
n

n

d

d
f t( ) s

n
F s( ) s

n 1–
f 0( ) s

n 2–

td
d

f 0( )––

f t( ) td
∞–

t

∫ F s( )
s

----------- f
1–

0( )
s

----------------+

f t a–( )u t a–( ) a 0>,
e

as–
F s( )

e
at–

f t( ) F s a+( )

f at( ) a 0>, 1
a
---F

s
a
--- 

 

tf t( )
sd

d– F s( )( )

t
n

f t( ) 1( )n

s
n

n

d

d
F s( )–

f t( )
t

---------- F u( ) ud
s

∞
∫

f t t1–( ) e
t1s–

F s( )
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LAPLACE Example 1 – Voltage Gain Transfer Function

To find the voltage gain transfer function for the circuit in Figure 26-7:, convert
the circuit to its equivalents-domain circuit and solve forvo / vg.

Figure 26-7: LAPLACE Example 1 Circuit

Use transforms from Table 26-2: to convert the inductor, capacitor, and resistors. L{f(t)}
represents the Laplace transform of f(t):

To convert the voltage source to thes-domain, use the sinωt transform from
Table 26-1:

voC = 1 µF

L = 50 mH

R2 = 250 Ω

vg = 2 sin 3t

R1= 1000 Ω n2

i1

i2 i3

n0

n1

L L
td

d
f t( )

 
 
 

L sF s( ) f 0( )–( )⋅ 50 10
3–× s 0–( )⋅ 0.05s= = =

L
1
C
---- f t( ) τd

0

t

∫
 
 
  1

C
---- F s( )

s
----------- f

1–
0( )

s
----------------+ 

 ⋅ 1

10
6–

---------- 1
s
--- 0+ 

 ⋅ 10
6

s
--------= = =

L R1 f t( )⋅{ } R1 F s( )⋅ R1 1000= = = Ω

L R2 f t( )⋅{ } R2 F s( )⋅ R2 250= = = Ω
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Figure 26-8: displays thes-domain equivalent circuit.

Figure 26-8: S-Domain Equivalent of the LAPLACE Example 1 Circuit

Summing the currents leaving node n2:

Solve forvo:

The voltage gain transfer function is

L 2 3sin t{ } 2
3

s
2

3
2

+
----------------⋅ 6

s
2

9+
--------------= =

vo
10

6

s
--------

0.05s

250 Ω

vg
6

s
2

9+
--------------=

1000 Ω

i1

i2 i3

n2

n0

n1

vo vg–

1000
----------------

vo

250 0.05s+
----------------------------

vos

10
6

--------+ + 0=

vo

1000 s 5000+( )vg

s
2

6000s 25 10
6×+ +

-----------------------------------------------------=

H s( )
vo

vg
----- 1000 s 5000+( )

s
2

6000s 25 10
6×+ +

----------------------------------------------------- 5 10
6× 1000s+

25 10
6× 6000s s

2
+ +

-----------------------------------------------------= = =
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For the Star-Hspice Laplace function call, usekn anddm coefficients for the
transfer function in the form:

The coefficients from the voltage gain transfer function above are

k0 = 5×106 k1 = 1000

d0 = 25×106 d1 = 6000 d2 = 1

Using these coefficients, a Star-Hspice Laplace modeling function call for the
voltage gain transfer function of the circuit in Figure 26-7: is

Eexample1 n1 n0 LAPLACE n2 n0 5E6 1000 / 25E6 6000 1

LAPLACE Example 2 – Differentiator

You can model a differentiator using either G or E elements as shown in the
following example.

In the frequency domain:

E element:

G element:

In the time domain:

E element:

G element:

H s( )
k0 k1s … kns

n
+ + +

d0 d1s … dms
m

+ + +
---------------------------------------------------=

Vout ksVin=

I out ksVin=

vout k
td

dVin
=

iout k
td

dVin
=
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For a differentiator, the voltage gain transfer function is

In the general form of the transfer function,

,

If you setk1 = k andd0 = 1 and the remaining coefficients are zero, then the
equation becomes

Using the coefficientsk1 = k andd0= 1 in the Laplace modeling, the Star-Hspice
circuit descriptions for the differentiator are:

Edif out GND LAPLACE in GND 0 k / 1
Gdif out GND LAPLACE in GND 0 k / 1

LAPLACE Example 3 – Integrator

An integrator can be modeled by G or E elements as follows:

In the frequency domain:

E Element:

G Element:

H s( )
Vout

V in
---------- ks= =

H s( )
k0 k1s … knsn+ + +

d0 d1s … dmsm+ + +
---------------------------------------------------=

H s( ) ks
1
----- ks= =

Vout
k
s
-- V in=

I out
k
s
-- V in=
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In the time domain:

E Element:

G Element:

For an integrator, the voltage gain transfer function is:

In the general form of the transfer function,

Like the previous example, if you makek0 = k andd1 = 1, then the equation
becomes

  Laplace Transform POLE (Pole/Zero) Function
This section describes the general form of the pole/zero transfer function and
provides examples of converting specific transfer functions into pole/zero circuit
descriptions.

The POLE Function Call

The POLE function in Star-Hspice is useful when the poles and zeros of the
circuit are available. The poles and zeros can be derived from the transfer
function, as described in this chapter, or you can use the Star-Hspice.PZ
statement to find them, as described in “Using Pole/Zero Analysis” on page
24-3.

vout k Vin td∫=

iout k Vin td∫=

H s( )
Vout

V in
---------- k

s
--= =

H s( )
k0 k1s … kns

n
+ + +

d0 d1s … dms
m

+ + +
---------------------------------------------------=

H s( ) k 0 … 0+ + +
0 s … 0+ + +
--------------------------------- k

s
--= =
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There are two forms of the Star-Hspice LAPLACE function call, one for
transconductance and one for voltage gain transfer functions. See “Using G and
E Elements” on page -4 for the general forms and list of optional parameters.

To use the POLE pole/zero modeling function, find thea, b, f, andα coefficients
of the transfer function. The transfer function is thes-domain (frequency
domain) ratio of the output of a single-source circuit to the input, with initial
conditions set to zero.

General Form of the Transfer Function

The general expanded form of the pole/zero transfer functionH(s) is:

(1)

The a, b,α, and f values can be parameterized.

Examples

Ghigh_pass  0  out   POLE  in  0  1.0   0.0,0.0 / 1.0
0.001,0.0
Elow_pass  out  0     POLE  in  0   1.0 / 1.0,  1.0,0.0
0.5,0.1379

The Ghigh_pass statement describes a high pass filter with transfer function

The Elow_pass statement describes a low-pass filter with transfer function

H s( )
a s αz1 j2π f z1+ +( ) s αz1 j2π f z1–+( )… s αzn j2π f zn+ +( ) s αzn j2π f zn–+( )

b s αp1 j2π f p1+ +( ) s αp1 j2π f p1–+( )… s αpm j2π f pm+ +( ) s αpm j2π f pm–+( )
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

H s( ) 1.0 s 0.0 j 0.0⋅+ +( )⋅
1.0 s 0.001 j 0.0⋅+ +( )⋅
-----------------------------------------------------------=

H s( ) 1.0
1.0 s 1+( ) s 0.5 j2π 0.1379⋅+ +( ) s 0.5 j2π 0.1379⋅( )–+( )⋅
-----------------------------------------------------------------------------------------------------------------------------------------------------=
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To write an Star-Hspice pole/zero circuit description for an element, you need to
know the element’s transfer functionH(s) in terms of thea, b, f, andα
coefficients. Use the values of these coefficients in POLE function calls in the
Star-Hspice circuit description.

First, however, simplify the transfer function, as described in the next section.

Star-Hspice Reduced Form of the Transfer Function

Complex poles and zeros occur in conjugate pairs (a set of complex numbers
differ only in the signs of their imaginary parts):

,  for poles

and

,  for zeros

To write the transfer function in Star-Hspice pole/zero format, supply
coefficients for one term of each conjugate pair and Star-Hspice provides the
coefficients for the other term. If you omit the negative complex roots, the result
is the reduced form of the transfer function,Reduced{ H(s)}. Find the reduced
form by collecting all the general form terms with negative complex roots:

(1)

Then discard the right-hand term, which contains all the terms with negative
roots. What remains is the reduced form:

(2)

For this function find thea, b, f, andα coefficients to use in an Star-Hspice
POLE function for a voltage gain transfer function. The following examples
show how to determine the coefficients and write POLE function calls for a
high-pass filter and a low-pass filter.

s αpm j2π f pm+ +( ) s αpm j2π f pm–+( )

s αzn j2π f zn+ +( ) s αzn j2π f zn–+( )

H s( )
a s αz1 j2π f z1+ +( )… s αzn j2π f zn+ +( )

b s αp1 j2π f p1+ +( )… s αpm j2π f pm+ +( )
-----------------------------------------------------------------------------------------------------------

a s αz1 j2π f z1–+( )… s αzn –+(
b s αp1 j2π f p1–+( )… s αpm –+(
----------------------------------------------------------------------------------⋅=

Reduced H s( ){ }
a s αz1 j2π f z1+ +( )… s αzn j2π f zn+ +( )

b s αp1 j2π f p1+ +( )… s αpm j2π f pm+ +( )
-----------------------------------------------------------------------------------------------------------=
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POLE Example 1 – Highpass Filter

For a high-pass filter with a given transconductance transfer function, such as

Find thea, b, α, andf coefficients necessary to write the transfer function in the
general form (1) shown previously, so that you can clearly see the conjugate
pairs of complex roots. You only need to supply one of each conjugate pair of
roots in the Laplace function call. Star-Hspice automatically inserts the other
root.

To get the function into a form more similar to the general form of the transfer
function, rewrite the given transconductance transfer function as

Since this function has no negative imaginary parts, it is already in the Star-
Hspice reduced form (2) shown previously. Now you can identify thea, b, f, and
α coefficients so that the transfer functionH(s) matches the reduced form. This
matching process obtains the following values:

n = 1, m = 1,

a = 1.0 αz1 = 0.0 fz1 = 0.0

b = 1.0 αp1 = 0.001 fp1 = 0.0

Using these coefficients in the reduced form provides the desired transfer
function, .

So the general transconductance transfer function POLE function call,
Gxxx n+ n- POLE in+ in- a αz1 ,f z1 ... αzn ,f zn  / b αp1,f p1... αpm,f pm

for an element namedGhigh_pass becomes
Ghigh_pass gnd out POLE in gnd 1.0 0.0,0.0 / 1.0 0.001,0.0

H s( ) s
s 0.001+( )

---------------------------=

H s( ) 1.0 s 0.0+( )
1.0 s 0.001+( )
----------------------------------=

s
s 0.001+( )

---------------------------
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POLE Example 2 – Low-Pass Filter

For a low-pass filter with the given voltage gain transfer function

you need to find thea, b, α, andf coefficients to write the transfer function in the
general form, so that you can identify the complex roots with negative imaginary
parts.

To separate the reduced form,Reduced{ H(s)}, from the terms with negative
imaginary parts, rewrite the given voltage gain transfer function as

So

or

Now assign coefficients in the reduced form to match the given voltage transfer
function. The following coefficient values produce the desired transfer function:

n = 0, m = 2,

a =1.0 b = 1.0 αp1 = 1.0 fp1 = 0 αp2 = 0.5fp2 = 0.15

H s( ) 1.0
1.0 s 1.0 j2π 0.0⋅+ +( ) s 0.5 j2π 0.15⋅+ +( ) s 0.5 j2π 0.15⋅–+( )
----------------------------------------------------------------------------------------------------------------------------------------------------------------=

H s( ) 1.0
1.0 s 1.0 j2π 0.0⋅+ +( ) s 0.5 j2π 0.15⋅+ +( )
------------------------------------------------------------------------------------------------------------- 1.0

s 0.5 j2π 0.15⋅–+( )
---------------------------------------------------⋅=

Reduced H s( ){ } 1.0
s 0.5 j2π 0.15⋅–+( )

---------------------------------------------------⋅=

Reduced H s( ){ } 1.0
1.0 s 1.0+( ) s 0.5 j2π 0.15⋅+ +( )
---------------------------------------------------------------------------------=

a s αz1 j2π f z1+ +( )… s αzn j2π f zn+ +( )
b s αp1 j2π f p1+ +( )… s αpm j2π f pm+ +( )
----------------------------------------------------------------------------------------------------------- 1.0

1.0 s 1.0 j2π 0.0⋅+ +( ) s 0.5 j2π+ +(
---------------------------------------------------------------------------------------------=
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These coefficients can be substituted in the POLE function call for a voltage gain
transfer function,
Exxx n+ n- POLE in+ in- a αz1 ,f z1 ... αzn ,f zn  / b αp1,f p1... αpm,f pm

for an element namedElow_pass to obtain the Star-Hspice statement
Elow_pass out GND POLE in 1.0 / 1.0 1.0,0.0 0.5,0.15

RC Line Modeling

Most RC lines can have very simple models, with just a single dominant pole.
The dominant pole can be found by AWE methods, computed based on the total
series resistance and capacitance4, or determined by the Elmore delay5.

The Elmore delay uses the value (d1-k1) as the time constant of a single-pole
approximation to the complete H(s), where H(s) is the transfer function of the
RC network to a given output. The inverse Laplace transform of h(t) is H(s):

Actually, the Elmore delay is the first moment of the impulse response, and so
corresponds to a first order AWE result.

Figure 26-9: Circuits for an RC Line

τDE t h t( ) td⋅
0

∞
∫=

(6)

+
0.8pF

+

0.7pF0.8pF0.6pF

200 80 160 200(2)(1) (3) (4) (5)

v1
e1
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RC Line Circuit File

* Laplace testing RC line
.Tran 0.02ns 3ns
.Options Post Accurate List Probe
v1 1 0 PWL 0ns 0 0.1ns 0 0.3ns 5 1.3ns 5 1.5ns 0
r1 1 2 200
c1 2 0 0.6pF
r2 2 3 80
c2 3 0 0.8pF
r3 3 4 160
c3 4 0 0.7pF
r4 4 5 200
c4 5 0 0.8pF
e1 6 0 LAPLACE 1 0 1 / 1 1.16n
.Probe v(1) v(5) v(6)
.Print v(1) v(5) v(6)
.End

The output of the RC circuit shown in Figure 26-9: can be closely approximated
by a single pole response, as shown in Figure 26-10:.
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Figure 26-10: Transient Response of the RC Line and Single-Pole
Approximation

Notice in Figure 26-10: that the single pole approximation has less delay: 1 ns
compared to 1.1 ns for the full RC line model at 2.5 volts. The single pole
approximation also has a lower peak value than the RC line model. All other
things being equal, a circuit with a shorter time constant results in less filtering
and allows a higher maximum voltage value. The single-pole approximation
produces a lower amplitude and less delay than the RC line because the single
pole neglects the other three poles in the actual circuit. However, a single-pole
approximation still gives very good results for many problems.

full RC line
model, v(5)

input, v(1)

single-pole
approximation,
v(6)
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  AWE Transfer Function Modeling
Single-pole transfer function approximations can cause larger errors for low-loss
lines than for RC lines since lower resistance allows ringing. Because circuit
ringing creates complex pole pairs in the transfer function approximation, at
least one complex pole pair is needed to represent low-loss line response. Figure
26-11: shows a typical low-loss line, along with the transfer function sources
used to test the various approximations. The transfer functions were obtained by
asymptotic waveform evaluation6.

Figure 26-11: Circuits for a Low-Loss Line

Low-Loss Line Circuit File

* Laplace testing LC line Pillage Apr 1990
.Tran 0.02ns 8ns
.Options Post Accurate List Probe
v1 1 0 PWL 0ns 0 0.1ns 0 0.2ns 5
r1 1 2 25
L1 2 3 10nH
c2 3 0 1pF
L2 3 4 10nH
c3 4 0 1pF

(6)

+

1pF

+

1pF1pF

25Ω 10nH(2)(1) (3) ( (5)

v1

e1

400Ω

10nH 100nH

(7)

+
e2

(8)

+
e3
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L3 4 5 100nH
c4 5 0 1pF
r4 5 0 400

e3 8 0 LAPLACE 1 0 0.94 / 1.0 0.6n

e2 7 0 LAPLACE 1 0 0.94e20 / 1.0e20 0.348e11 14.8 1.06e-9
2.53e-19
+ SCALE=1.0e-20

e1 6 0 LAPLACE 1 0 0.94 / 1 0.2717e-9 0.12486e-18
.Probe v(1) v(5) v(6) v(7) v(8)
.Print v(1) v(5) v(6) v(7) v(8)
.End

Figure 26-12: shows the transient response of the low-loss line, along with E
element Laplace models using one, two, and four poles6. Note that the single-
pole model shows none of the ringing of the higher order models. Also, all of the
E models had to adjust the gain of their response for the finite load resistance, so
the models are not independent of the load impedance. The 0.94 gain multiplier
in the models takes care of the 25 ohm source and 400 ohm load voltage divider.
All of the approximations give good delay estimations.

While the two-pole approximation gives reasonable agreement with the transient
overshoot, the four-pole model gives almost perfect agreement. The actual
circuit has six poles. Scaling was used to bring some of the very small numbers
in the Laplace model above the 1e-28 limit of Star-Hspice. The SCALE
parameter multiplies every parameter in the LAPLACE specification by the
same value, in this case 1.0E-20.
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Figure 26-12: – Transient Response of the Low-Loss Line

A low-loss line allows reflections between the load and source, while the loss of
an RC line usually isolates the source from the load. So you can either
incorporate the load into the AWE transfer function approximation or create an
Star-Hspice model that allows source/load interaction. If you allow source/load
interaction, the AWE expansions do not have to be done each time you change
load impedances, allowing you to handle nonlinear loads and remove the need
for a gain multiplier, as in the circuit file shown. You can use four voltage
controlled current sources, or G elements, to create a Y-parameter model for a
transmission line. The Y-parameter network allows the source/load interaction
needed. The next example shows such a Y-parameter model for a low-loss line.

four-pole
model, v(7)

full model, v(5) two-pole
model, v(6)

single-pole
model, v(8)

input, v(1)
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  Y-Parameter Line Modeling
A model that is independent of load impedance is more complicated. You can
still use AWE techniques, but you need a way for the load voltage and current
must be able to interact with the source impedance. Given a transmission line of
100 ohms and 0.4 ns total delay, as shown in Figure 26-13:, compare the
response of the line using a Y-parameter model and a single-pole model.

Figure 26-13: Line and Y-Parameter Modeling

The voltage and current definitions for a Y-parameter model are shown in Figure
26-14:.

Figure 26-14: – Y Matrix for the Two-Port Network

(6)

+
+

25Ω (2)(1) (5)

v1
e1

400Ω

Y model

Zk = 100Ω
delay = 4.0 ns/meter
length = 0.1

(8)

400Ω

25Ω (3)

I1 I2

Vin Vout

+

-

+

-

Y12

Y22Y21

Y11
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The general network in Figure 26-14: is described by the following equations,
which can be translated into G elements:

A schematic for a set of two-port Y parameters is shown in Figure 26-15:. Note
that the circuit is essentially composed of G elements.

Figure 26-15: – Schematic for the Y-Parameter Network

The Laplace parameters for the Y-parameter model are determined by a Pade
expansion of the Y-parameters of a transmission line, as shown in matrix form
in the following equation.

,

wherep is the product of the propagation constant and the line length7.

I 1 Y11V in Y12Vout+=

I 2 Y21V in Y22Vout+=

VoutVin

GND

I1 I2

I1 = y11Vin + y12Vout
I2 = y21Vin + y22Vout

Gy11 Gy12 Gy21 Gy22

Y
1
Zo
------ p( )coth p( )csch–

p( )csch– p( )coth
⋅=
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A Pade approximation contains polynomials in both the numerator and the
denominator. Since a Pade approximation can model both poles and zeros and
sincecoth andcsch functions also contain both poles and zeros, a Pade
approximation gives a better low order model than a series approximation. A
Pade expansion ofcoth(p) andcsch(p), with second order numerator and third
order denominator, is given below:

When you substitute ( ) forp, you get polynomial expressions
for each G element. When you substitute 400 nH forL, 40 pF forC, 0.1 meter
for length, and 100 forZo ( ) in the matrix equation above, you get
values you can use in a circuit file.

The circuit file shown below uses all of the above substitutions. The Pade
approximations have different denominators forcsch andcoth, but the circuit
file contains identical denominators. Although the actual denominators forcsch
andcoth are only slightly different, using them would cause oscillations in the
Star-Hspice response. To avoid this problem, use the same denominator in the
coth andcsch functions in the example. The simulation results may vary,
depending on which denominator is used as the common denominator, because
the coefficient of the third order term is changed (but by less than a factor of 2).

coth p( )
1 2

5
--- p2⋅+ 

 

p 1
15
------ p3⋅+ 

 
---------------------------------→

csch p( )
1 1

20
------ p2⋅– 

 

p 7
60
------ p3⋅+ 

 
---------------------------------→

s length LC⋅ ⋅

Zo L C⁄=
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LC Line Circuit File
* Laplace testing LC line Pade
.Tran 0.02ns 5ns
.Options Post Accurate List Probe
v1 1 0 PWL 0ns 0 0.1ns 0 0.2ns 5
r1 1 2 25
r3 1 3 25
u1 2 0 5 0 wire1 L=0.1
r4 5 0 400
r8 8 0 400

e1 6 0 LAPLACE 1 0 1 / 1 0.4n

Gy11 3 0 LAPLACE 3 0 320016 0.0 2.048e-14 / 0.0 0.0128 0.0
2.389e-22
Gy12 3 0 LAPLACE 8 0 -320016 0.0 2.56e-15 / 0.0 0.0128 0.0
2.389e-22
Gy21 8 0 LAPLACE 3 0 -320016 0.0 2.56e-15 / 0.0 0.0128 0.0
2.389e-22
Gy22 8 0 LAPLACE 8 0 320016 0.0 2.048e-14 / 0.0 0.0128 0.0
2.389e-22

.model wire1 U Level=3 PLEV=1 ELEV=3 LLEV=0 MAXL=20
+ ZK=100 DELAY=4.0n

.Probe v(1) v(5) v(6) v(8)

.Print v(1) v(5) v(6) v(8)

.End

Figure 26-16: compares the output of the Y-parameter model with that of a full
transmission line simulation and with that obtained for a single pole transfer
function. In the latter case, the gain was not corrected for the load impedance, so
the function produces an incorrect final voltage level. As expected, the Y-
parameter model gives the correct final voltage level. Although the Y-parameter
model gives a good approximation of the circuit delay, it contains too few poles
to model the transient details fully. However, the Y-parameter model does give
excellent agreement with the overshoot and settling times.
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Figure 26-16: – Transient Response of the Y-Parameter Line Model

  Comparison of Circuit and Pole/Zero Models
This example simulates a ninth order low-pass filter circuit and compares the
results with its equivalent pole/zero description using an E element. The results
are identical, but the pole/zero model runs about 40% faster. The total CPU times
for the two methods are shown in “Simulation Time Summary” on page 26-42.
For larger circuits, the computation time saving can be much higher.

The input listings for each model type are shown below. Figures 26-17 and 26-
18 display the transient and frequency response comparisons resulting from the
two modeling methods.

Y-parameter
approximation, v(8)

U-element
transmission line, v(5)

single-pole
approximation, v(6)

input, v(1)
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Circuit Model Input Listing

low_pass9a.sp 9th order low_pass filter.
* Reference: Jiri Vlach and Kishore Singhal, “Computer
Methods for
* Circuit Analysis and Design”, Van Nostrand Reinhold Co.,
1983,
* pages 142, 494-496.
*
.PARAM freq=100 tstop='2.0/freq'
*.PZ v(out) vin
.AC dec 50 .1k 100k
.OPTIONS dcstep=1e3 post probe unwrap
.PROBE ac vdb(out) vp(out)
.TRAN STEP='tstop/200' STOP=tstop
.PROBE v(out)
vin in GND sin(0,1,freq) ac 1
.SUBCKT fdnr 1 r1=2k c1=12n r4=4.5k
r1 1 2 r1
c1 2 3 c1
r2 3 4 3.3k
r3 4 5 3.3k
r4 5 6 r4
c2 6 0 10n
eop1 5 0 opamp 2 4
eop2 3 0 opamp 6 4
.ENDS
*
rs in 1 5.4779k
r12 1 2 4.44k
r23 2 3 3.2201k
r34 3 4 3.63678k
r45 4 out 1.2201k
c5 out 0 10n
x1 1 fdnr r1=2.0076k  c1=12n    r4=4.5898k
x2 2 fdnr r1=5.9999k  c1=6.8n   r4=4.25725k
x3 3 fdnr r1=5.88327k c1=4.7n   r4=5.62599k
x4 4 fdnr r1=1.0301k  c1=6.8n   r4=5.808498k
.END
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Pole/Zero Model Input Listing

ninth.sp 9th order low_pass filter.
.PARAM twopi=6.2831853072
.PARAM freq=100 tstop='2.0/freq'
.AC dec 50 .1k 100k
.OPTIONS dcstep=1e3 post probe unwrap
.PROBE ac vdb(outp) vp(outp)
.TRAN STEP='tstop/200' STOP=tstop
.PROBE  v(outp)
vin in GND sin(0,1,freq) ac 1
Epole outp GND POLE in GND   417.6153
+    0. 3.8188k
+    0. 4.0352k
+    0. 4.7862k
+    0. 7.8903k / 1.0
+   '73.0669*twopi'     3.5400k
+   '289.3438*twopi'    3.4362k
+   '755.0697*twopi'    3.0945k
+   '1.5793k*twopi'     2.1105k
+   '2.1418k*twopi'     0.
repole outp GND 1e12
.END

Simulation Time Summary

Circuit model simulation times:

analysis time # points . iter
conv.iter

op point 0.23  1 3
ac analysis 0.47  151 151
transient 0.75  201 226 113
rev= 0
readin 0.22
errchk 0.13
setup 0.10
output 0.00

total cpu time  1.98 seconds

Pole/zero model simulation times:
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analysis time # points tot. iter
conv.iter

op point 0.12 1 3
ac analysis 0.22 151 151
transient 0.40 201 222 111
rev= 0
readin 0.23
errchk 0.13
setup 0.02
output 0.00

total cpu time  1.23 seconds

Figure 26-17: Transient Responses of the Circuit and Pole/Zero
Models
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Figure 26-18: AC Analysis Responses of the Circuit and Pole/Zero
Models
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Modeling Switched Capacitor Filters
This section describes how to create a model

  Switched Capacitor Network
It is possible to model a resistor as a capacitor and switch combination. The
value of the equivalent is proportional to the frequency of the switch divided by
the capacitance.

Construct a filter from MOSFETs and capacitors where the filter characteristics
are a function of the switching frequency of the MOSFETs.

In order to quickly determine the filter characteristics, use ideal switches
(voltage controlled resistors) instead of MOSFETs. The resulting simulation
speedup can be as great as 7 to 10 times faster than a circuit using MOSFETs.

The model constructs an RC network using a resistor and a capacitor along with
a switched capacitor equivalent network. Node RCOUT is the resistor/capacitor
output, and VCROUT is the switched capacitor output.

The switches GVCR1 and GVCR2, together with the capacitance C3, model the
resistor. The resistor value is calculated as:

where Tswitch is the period of the pulses PHI1 and PHI2.

Res
Tswitch

C3
--------------------=
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Figure 26-19: VCR1.SP Switched Capacitor RC Circuit

Example

*FILE:VCR1.SP   A SWITCHED CAPACITOR RC CIRCUIT
.OPTIONS acct NOMOD POST

.IC V(SW1)=0 V(RCOUT)=0 V(VCROUT)=0

.TRAN 5U 200U

.GRAPH RC=V(RCOUT)  SWITCH=V(VCROUT)  (0,5)

VCC   VCC     GND     5V

C     RCOUT   GND     1NF
R     VCC     RCOUT   25K

C6    VCROUT  GND     1NF
* equivalent circuit for 25k resistor  r=12.5us/.5nf
VA    PHI1  GND    PULSE 0 5 1US .5US .5US 3US 12.5US
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VB    PHI2  GND    PULSE 0 5 7US .5US .5US 3US 12.5US
GVCR1 VCC SW1 PHI1 GND LEVEL=1 MIN=100 MAX=1MEG 1.MEG -.5MEG
GVCR2 SW1 VCROUT PHI2 GND LEVEL=1 MIN=100 MAX=1MEG 1.MEG .5MEG
C3    SW1     GND    .5NF

.END

  Switched Capacitor Filter Example - Fifth Order
This example is a fifth order elliptic switched capacitor filter with passband 0-1
kHz, loss less than 0.05 dB. It is realized by cascading linear, high_Q biquad,
and low_Q biquad sections. The G element models the switches with a resistance
of 1 ohm when the switch is closed and 100 Megohm when it is open. The E
element models op-amps as an ideal op-amp. The transient response of the filter
is provided for 1 kHz and 2 kHz sinusoidal input signal8.

Figure 26-20: Linear Section

IN
OUT
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S2 S3
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S5

S6

Cs

Csh Ce

Cd

OP1
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Figure 26-21: High_Q Biquad Section

Figure 26-22: Low_Q Biquad Section
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Star-Hspice Input File for 5th Order Switched Capacitor Filter

SWCAP5.SP Fifth Order Elliptic Switched Capacitor Filter.
.OPTIONS POST PROBE
.GLOBAL phi1 phi2
.TRAN 2u 3.2m UIC
*.GRAPH v(phi1) v(phi2) V(in)
.PROBE V(out)
*.PLOT v(in) v(phi1) v(phi2) v(out
*Iin   0    in SIN(0,1ma,1.0khz)
Iin   0    in SIN(0,1v,2khz)
Vphi1 phi1 0  PULSE(0,2 00u,.5u,.5u,7u,20u)
Vphi2 phi2 0  PULSE(0,2 10u,.5u,.5u,7u,20u)
Rsrc  in   0  1k
Rload out  0  1k
Xsh   in   out1 sh
Xlin  out1 out2 linear
Xhq   out2 out3 hqbiq
Xlq   out3 out  lqbiq

Sample and Hold
.SUBCKT sh in out
Gs1  in  1 VCR PWL(1) phi1 0  0.5v,100meg 1.0v,1.0
Eop1 out 0 OPAMP 1  out
Ch    1  0  1.0pf
.ENDS

Linear Section
.SUBCKT linear  in out
Gs1  in 1 VCR PWL(1) phi1 0  0.5v,100meg 1.0v,1.0
Gs2  1  0 VCR PWL(1) phi2 0  0.5v,100meg 1.0v,1.0
Cs   1  2  1.0pf
Gs3  2  0 VCR PWL(1) phi1 0  0.5v,100meg 1.0v,1.0
Gs4  2  3 VCR PWL(1) phi2 0  0.5v,100meg 1.0v,1.0
Eop1 out 0 OPAMP 0 3
Ce   out 3  9.6725pf
Gs5  out 4 VCR PWL(1) phi2 0 0.5v,100meg 1.0v,1.0
Gs6  4   0 VCR PWL(1) phi1 0 0.5v,100meg 1.0v,1.0
Cd   4   2 1.0pf
Csh  in  3 0.5pf
.ENDS
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High_Q Biquad Section
.SUBCKT hqbiq in out
Gs1  in 1 VCR PWL(1) phi2 0  0.5v,100meg 1.0v,1.0
Gs2  1  0 VCR PWL(1) phi1 0  0.5v,100meg 1.0v,1.0
C1   1  2  0.5pf
Gs3  2  0 VCR PWL(1) phi1 0  0.5v,100meg 1.0v,1.0
Gs4  2  3 VCR PWL(1) phi2 0  0.5v,100meg 1.0v,1.0
Eop1 4  0 OPAMP 0 3
Ca   3  4  7.072pf
Gs5  4  5 VCR PWL(1) phi1 0  0.5v,100meg 1.0v,1.0
Gs6  5  0 VCR PWL(1) phi2 0  0.5v,100meg 1.0v,1.0
C3   5  6  0.59075pf
Gs7  6  7 VCR PWL(1) phi2 0  0.5v,100meg 1.0v,1.0
Gs8  6  0 VCR PWL(1) phi1 0  0.5v,100meg 1.0v,1.0
Eop2 out 0 OPAMP 0 7
Cb   7  out  4.3733pf
Gs9  out 8 VCR PWL(1) phi2 0 0.5v,100meg 1.0v,1.0
Gs10 8   0 VCR PWL(1) phi1 0 0.5v,100meg 1.0v,1.0
C4   out 3 1.6518pf
C2   8   2 0.9963pf
C11  7  in 0.5pf
.ENDS

Low_Q Biquad Section

.SUBCKT lqbiq in out
Gs1  in 1 VCR PWL(1) phi2 0  0.5v,100meg 1.0v,1.0
Gs2  1  2 VCR PWL(1) phi2 0  0.5v,100meg 1.0v,1.0
C1   2  3  0.9963pf
Gs3  2  0 VCR PWL(1) phi1 0  0.5v,100meg 1.0v,1.0
Gs4  3  0 VCR PWL(1) phi1 0  0.5v,100meg 1.0v,1.0
Gs5  3  4 VCR PWL(1) phi2 0  0.5v,100meg 1.0v,1.0
Ca   4  5  8.833pf
Eop1 5  0 OPAMP 0 4
Gs6  5  6 VCR PWL(1) phi1 0  0.5v,100meg 1.0v,1.0
Gs7  6  0 VCR PWL(1) phi2 0  0.5v,100meg 1.0v,1.0
C3   6  7  1.0558pf
Gs8  7  8 VCR PWL(1) phi2 0  0.5v,100meg 1.0v,1.0
Gs9  7  0 VCR PWL(1) phi1 0  0.5v,100meg 1.0v,1.0
Eop2 9  0 OPAMP 0 8
Cb   8  9  3.8643pf
Gs10 9  10 VCR PWL(1) phi2 0  0.5v,100meg 1.0v,1.0
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Gs11 10 0  VCR PWL(1) phi1 0  0.5v,100meg 1.0v,1.0
C4   10 7  0.5pf
C2   10 3  0.5pf
C11  8  1  3.15425pf
Gs12 9 out VCR PWL(1) phi2 0  0.5v,100meg 1.0v,1.0
.ENDS
.END

Figure 26-23: Response to 1 kHz Sinusoidal Input
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Figure 26-24: Response to 2 kHz Sinusoidal Input
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