Prob. 1-3: Find the expression for small signal R_{in}, G_m, R_{out} and Gain for all the circuits. Assume all the BJTs are biased in forward active region and MOSFETs in saturation. Consider $r_o = \infty$

Prob. 1

![Circuit Diagram](a)

- $R_{in} = R_B + R_E + R_C (1 + \beta)$
- $R_{out} = R_C$
- $G_m = -\frac{R_E}{R_{in}} \cdot g_m$
- $Gain = G_m \cdot R_{out} = -\frac{\beta R_C}{R_B + R_E + R_C (1 + \beta)}$

(b)

- $R_{in} = R_B + R_E + R_C (1 + \beta)$
- $R_{out} = R_E \parallel \frac{R_B + R_C}{1 + \beta}$
- $G_m = \frac{1}{R_B + R_E + \frac{R_C}{1 + \beta}} \cdot g_m = \frac{1 + \beta}{R_B + R_E}$
- $Gain = G_m \cdot R_{out}$

But you can just apply voltage divider to get gain, even without knowing G_m & R_{out}.

ECE 323 HW # 3

Prob. 1-3: Find the expression for small signal R_{in}, G_m, R_{out} and Gain for all the circuits. Assume all the BJTs are biased in forward active region and MOSFETs in saturation. Consider $r_o = \infty$

Prob. 1

![Circuit Diagram](a)

- $R_{in} = R_B + R_E + R_C (1 + \beta)$
- $R_{out} = R_C$
- $G_m = -\frac{R_E}{R_{in}} \cdot g_m$
- $Gain = G_m \cdot R_{out} = -\frac{\beta R_C}{R_B + R_E + R_C (1 + \beta)}$

(b)

- $R_{in} = R_B + R_E + R_C (1 + \beta)$
- $R_{out} = R_E \parallel \frac{R_B + R_C}{1 + \beta}$
- $G_m = \frac{1}{R_B + R_E + \frac{R_C}{1 + \beta}} \cdot g_m = \frac{1 + \beta}{R_B + R_E}$
- $Gain = G_m \cdot R_{out}$

But you can just apply voltage divider to get gain, even without knowing G_m & R_{out}.

ECE 323 HW # 3

Prob. 1-3: Find the expression for small signal R_{in}, G_m, R_{out} and Gain for all the circuits. Assume all the BJTs are biased in forward active region and MOSFETs in saturation. Consider $r_o = \infty$

Prob. 1

![Circuit Diagram](a)

- $R_{in} = R_B + R_E + R_C (1 + \beta)$
- $R_{out} = R_C$
- $G_m = -\frac{R_E}{R_{in}} \cdot g_m$
- $Gain = G_m \cdot R_{out} = -\frac{\beta R_C}{R_B + R_E + R_C (1 + \beta)}$

(b)

- $R_{in} = R_B + R_E + R_C (1 + \beta)$
- $R_{out} = R_E \parallel \frac{R_B + R_C}{1 + \beta}$
- $G_m = \frac{1}{R_B + R_E + \frac{R_C}{1 + \beta}} \cdot g_m = \frac{1 + \beta}{R_B + R_E}$
- $Gain = G_m \cdot R_{out}$

But you can just apply voltage divider to get gain, even without knowing G_m & R_{out}.

ECE 323 HW # 3

Prob. 1-3: Find the expression for small signal R_{in}, G_m, R_{out} and Gain for all the circuits. Assume all the BJTs are biased in forward active region and MOSFETs in saturation. Consider $r_o = \infty$

Prob. 1

![Circuit Diagram](a)

- $R_{in} = R_B + R_E + R_C (1 + \beta)$
- $R_{out} = R_C$
- $G_m = -\frac{R_E}{R_{in}} \cdot g_m$
- $Gain = G_m \cdot R_{out} = -\frac{\beta R_C}{R_B + R_E + R_C (1 + \beta)}$

(b)

- $R_{in} = R_B + R_E + R_C (1 + \beta)$
- $R_{out} = R_E \parallel \frac{R_B + R_C}{1 + \beta}$
- $G_m = \frac{1}{R_B + R_E + \frac{R_C}{1 + \beta}} \cdot g_m = \frac{1 + \beta}{R_B + R_E}$
- $Gain = G_m \cdot R_{out}$

But you can just apply voltage divider to get gain, even without knowing G_m & R_{out}.

ECE 323 HW # 3

Prob. 1-3: Find the expression for small signal R_{in}, G_m, R_{out} and Gain for all the circuits. Assume all the BJTs are biased in forward active region and MOSFETs in saturation. Consider $r_o = \infty$

Prob. 1

![Circuit Diagram](a)

- $R_{in} = R_B + R_E + R_C (1 + \beta)$
- $R_{out} = R_C$
- $G_m = -\frac{R_E}{R_{in}} \cdot g_m$
- $Gain = G_m \cdot R_{out} = -\frac{\beta R_C}{R_B + R_E + R_C (1 + \beta)}$

(b)

- $R_{in} = R_B + R_E + R_C (1 + \beta)$
- $R_{out} = R_E \parallel \frac{R_B + R_C}{1 + \beta}$
- $G_m = \frac{1}{R_B + R_E + \frac{R_C}{1 + \beta}} \cdot g_m = \frac{1 + \beta}{R_B + R_E}$
- $Gain = G_m \cdot R_{out}$

But you can just apply voltage divider to get gain, even without knowing G_m & R_{out}.

ECE 323 HW # 3

Prob. 1-3: Find the expression for small signal R_{in}, G_m, R_{out} and Gain for all the circuits. Assume all the BJTs are biased in forward active region and MOSFETs in saturation. Consider $r_o = \infty$

Prob. 1

![Circuit Diagram](a)

- $R_{in} = R_B + R_E + R_C (1 + \beta)$
- $R_{out} = R_C$
- $G_m = -\frac{R_E}{R_{in}} \cdot g_m$
- $Gain = G_m \cdot R_{out} = -\frac{\beta R_C}{R_B + R_E + R_C (1 + \beta)}$

(b)

- $R_{in} = R_B + R_E + R_C (1 + \beta)$
- $R_{out} = R_E \parallel \frac{R_B + R_C}{1 + \beta}$
- $G_m = \frac{1}{R_B + R_E + \frac{R_C}{1 + \beta}} \cdot g_m = \frac{1 + \beta}{R_B + R_E}$
- $Gain = G_m \cdot R_{out}$

But you can just apply voltage divider to get gain, even without knowing G_m & R_{out}.

ECE 323 HW # 3

Prob. 1-3: Find the expression for small signal R_{in}, G_m, R_{out} and Gain for all the circuits. Assume all the BJTs are biased in forward active region and MOSFETs in saturation. Consider $r_o = \infty$

Prob. 1

![Circuit Diagram](a)

- $R_{in} = R_B + R_E + R_C (1 + \beta)$
- $R_{out} = R_C$
- $G_m = -\frac{R_E}{R_{in}} \cdot g_m$
- $Gain = G_m \cdot R_{out} = -\frac{\beta R_C}{R_B + R_E + R_C (1 + \beta)}$

(b)

- $R_{in} = R_B + R_E + R_C (1 + \beta)$
- $R_{out} = R_E \parallel \frac{R_B + R_C}{1 + \beta}$
- $G_m = \frac{1}{R_B + R_E + \frac{R_C}{1 + \beta}} \cdot g_m = \frac{1 + \beta}{R_B + R_E}$
- $Gain = G_m \cdot R_{out}$

But you can just apply voltage divider to get gain, even without knowing G_m & R_{out}.

(c) \[R_{in} = R_E + \frac{R_B + R_E}{1 + \beta} \]
\[R_{out} = R_E \left| \frac{R_B + R_E}{1 + \beta} \right| \]
\[G_m = \frac{1}{R_E} \]
\[Gain = G_m \cdot R_{out} \]
or just apply voltage divider

(d) \[R_{in} = R_B + \frac{R_{in1} + R_E (1 + \beta)}{1 + \beta} \]
\[R_{out} = \frac{R_{E2}}{1 + \beta_2} \left| \frac{R_C}{1 + \beta_2} \right| \]
\[\approx \frac{1}{G_{m2}} \]
\[G_m = -\frac{R_E \cdot G_{m1}}{R_B + R_{in1} + R_E (1 + \beta_1)} \]
\[Gain = G_m \cdot R_{out} \]
Prob.2

(a)

\[R_{o1} = \infty \]
\[\downarrow \]
\[R_{in} = \infty \]
\[G_m = 0 \]
\[G_{m in} = 0 \]

\[Rout = R_C \]

(b)

\[R_{in} = V_{in} \]
\[Rout = R_C \parallel \frac{1}{g_m} \]
\[G_m = \left(g_m_{Q2} + g_m_{M1} \right) \]
\[Gain = G_m \cdot Rout \]
\[R_{in} = \infty \quad \text{(current source)} \]
\[R_{out} = \frac{R_i}{1 + \beta} \]
\[G_m = \frac{1}{R_i} + g_m = \frac{1 + \beta}{R_i} \]
\[G_{in} = G_m \cdot R_{out} = 1 \]

\[R_{in} = \frac{R_i}{1 + \beta} + R_E (1 + \beta) \]
\[R_{out} = 0 \quad \text{(voltage source)} \]
\[G_m = -\frac{R_i \cdot g_m}{R_i + R_E (1 + \beta)} \]
\[G_{in} = G_m \cdot R_{out} = 0 \]
Prob. 3

\[R_{in} = R_1 + R_{II} \]

\[R_{out} = R_2 \parallel \frac{1}{g_m 2} \]

\[G_m = \frac{g_m}{R_1 + R_2} \left(g_m m_1 + g_m m_1 \right) \]

\[G_{in} = G_m \cdot R_{out} \]
\(b_{in} = \infty \)

\[R_{out} = \frac{1}{g_{m2}} \left| \left(R_2 + \frac{1}{g_{m3}} \right) \right| \frac{R_2}{1+\beta} \]

\(G_m = -g_{mM1} \)

\(G_{m_{in}} = G_m \cdot R_{out} \)
Prob. 4
For the circuit given below, find the expression for output resistance R_{out}, transimpedance $\frac{V_{out}}{I_{in}}$ and current gain $\frac{I_{z}}{I_{in}}$. Assume all the MOSFETs having same W/L and operating in saturation region. Consider $r_o = \infty$

\[V_{cc} \]

\[\downarrow \quad I_1 \quad \uparrow \]

\[\downarrow \quad I_2 \quad \uparrow \]

\[\downarrow \quad I_3 \quad \uparrow \]

\[\downarrow \quad I_4 \quad \uparrow \]

\[I_{in} \quad \downarrow \]

\[R_2 \]

\[\uparrow \quad V_{out} \]

\[I_z \]

All same $\frac{V}{I} \rightarrow I_{in} = I_1 = I_2 = I_3 = I_4 = I_Z \quad \rightarrow \quad \frac{I_Z}{I_{in}} = 1$

\[R_{out} = R_2 \quad (r_o = \infty) \]

\[\frac{V_{out}}{I_{in}} = 2 \cdot R_2 \]
Prob. 5

For the circuit given below, find the expression for R_{in}, R_{out}, G_m and gain. Assume all the MOSFETs operating in saturation region and consider $r_o = \infty$. Plot the behavior of output gain vs R_2.

![Circuit Diagram]

V_i controls V_{gs} of M_1 and M_2, in parallel.

$$R_{in} = R_1 + \frac{1}{g_{m1} + g_{m2}}$$

$R_{out} = (R_1 + R_2) \left[\frac{R_1}{R_1 + R_2} \right]^{-1} \left[\frac{1}{R_1 + R_2} \right] \left(g_{m1} + g_{m2} \right) = \frac{R_1 + R_2}{R_1 (g_{m1} + g_{m2}) + 1}$

(Vin = 0)

$$G_m = \frac{1}{R_1 + R_2} - \frac{R_2}{R_1 + R_2} \left(g_{m1} + g_{m2} \right) = \frac{1 - R_2 (g_{m1} + g_{m2})}{R_1 + R_2}$$

(Vout shorted)

$$Gain = G_m \cdot R_{out} = \frac{1 - R_2 (g_{m1} + g_{m2})}{R_1 (g_{m1} + g_{m2})}$$
Prob. 6
Find Req2 and Req3

\[
\text{Req2} = \left[\frac{R_1 + (R_2||\Gamma_{m1})}{R_1 + (R_2||\Gamma_{m1})} \right] \left[\frac{(\frac{R_2||\Gamma_{m1}}{R_1 + (R_2||\Gamma_{m1})}) \cdot g_{m1}}{R_1 + (R_2||\Gamma_{m1})} \right]^{-1}
\]

\[
\text{Req3} = \left[\frac{R_1 + R_2 + \Gamma_{m1}}{R_1 + R_2 + \Gamma_{m1}} \right] \left[\frac{(\frac{\Gamma_{m1} \cdot g_{m1}}{R_1 + R_2 + \Gamma_{m1}})}{R_1 + R_2 + \Gamma_{m1}} \right] \left[\frac{(\frac{R_2 + \Gamma_{m1}}{R_1 + R_2 + \Gamma_{m1}}) \cdot g_{m2}}{R_1 + R_2 + \Gamma_{m1}} \right]^{-1}
\]
Prob. 7
Find the input-to-output small-signal gain.

\[
\text{Gain} = \frac{\frac{I_{T1} + R_Z(1+\beta)}{R_1 + I_{T1} + R_Z(1+\beta)}}{R_3} \left(\frac{I_{T1} \cdot g_m}{I_{T1} + R_Z(1+\beta)} + g_m2 \right) \cdot R_3
\]