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I. INTRODUCTION 
WITCHED capacitor circuits have become increasingly popular in recent years.  This is due in large part to the availability 
of the high quality switches provided by CMOS technology.  Further, switched capacitor designs have greatly benefited from 

the substantial developments in the field of digital signal processing.  The dependence of filter coefficients on capacitance ratios 
allows precision on the order of 0.1% in switched capacitor filter implementations.  Switched capacitor circuits can also be used 
to realize circuits such as mixers, voltage controlled oscillators, signal processing circuits, etc. 
 
By their very nature, switched capacitor circuits are time varying.  Simulation of such circuits typically requires a transient 
analysis tool such as HSPICE.   In order to obtain a frequency response of a switched capacitor circuit with such a tool, a 
transient analysis would be required where the time step is determined by the highest frequency and simulation time is 
determined by the lowest frequency.  In addition, some post processing will be required on the output data of the transient 
analysis to extract gain and phase information.  This technique is time consuming and places a high demand on computer 
resources.  If many different frequency response simulations are required to optimize a design such an approach becomes 
impractical.  Mathematical models using tools such as MatLab and MathCad can use z-transform equations to provide transient 
and frequency responses.  However, z-transforms represent an idealized circuit realization that may hide many “real world” 
limitations of the actual physical implementation of the design such as linearity, clock overlap, dynamic range, etc. 
 
A tool that has been widely used to provide ac analysis of switched capacitor circuits is SwitCap, developed by Columbia 
University’s Department of electrical engineering.  Certainly SwitCap has been a useful tool providing quick simulations of 
switched capacitor circuits in both time and frequency domains.  However, in its present form, it is limited to analysis using ideal 
(linear) elements, and it does not provide noise analysis.   
 
Cadence Design Systems has developed a tool, SpectreRF, a simulator that does time and frequency domain analysis of switched 
capacitor circuits.  Features claimed for the tool include noise analysis, modeling of non-ideal components, distortion analysis, 
and modeling of periodic time-varying circuits in general, not just switched capacitor circuits.   
 
The purpose of this paper is to provide an introductory tour of SpectreRF while at the same verifying its simulations by 
comparison with simulations from existing tools.  SpectreRF has some striking similarities to SPICE: just as an operating point 
analysis must be done in SPICE before an ac analysis can be done, SpectreRF requires first computing a periodic operating point 
using what it calls “Periodic Steady State” analysis (PSS).  After the PSS analysis is completed, a “Periodic AC” analysis (PAC) 
may be run to find the frequency response of the switched capacitor circuit.  Noise behavior of the circuit can be simulated with a 
“Periodic Noise” analysis (Pnoise).  This simulation can be used to find the noise referred to the input or to the output of the 
switched capacitor circuit. 
 
Section II of this paper discusses the circuits used in evaluating SpectreRF.  Section III discusses the periodic steady state 
analysis, and section IV discusses periodic small signal analyses.   Section V discusses the simulation of switched capacitor 
circuits with SpectreRF and compares the results from SpectreRF with Matlab and Switcap. 

II. SWITCHED CAPACITOR LOW PASS FILTERS 
The circuits used to demonstrate these analysis tools are shown in Figures 1 and 2.  Figure 1 shows the switched capacitor biquad 
filter used.  The transfer function for this circuit is given as 

 
 

(1) 
 
This circuit has zeros at 9855.01694.0 jz ±−=  and two poles at 1272.08968.0 jz ±= .  It has a DC gain of -0.5dB, 
0.5dB ripple in the passband, and a 3dB bandwidth of 1.38MHz when a T=22.2nS (f=45MHz) clock is used.  The capacitor 
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values used are:  
 C1=170.8fF 
 C2=0.0fF 
 C3=13.2fF 
 C4=180.9fF 
 C5=180.9fF 
 C6=219fF 
 CA=1pF 
 CB=1pF 
 

A 5th order elliptical filter is also simulated by cascading two biquad filters and a single pole filter.  The transfer function that 
describes this filter is  

 
 

 
(2) 

The capacitances used for this filter are as follows: 
 
 
 Biquad 1 Biquad 2 Single pole 
 C1=0.1653pF C1=0.0511pF C1=-0.0933pF 
 C2=0pF C2=0pF C2=0.1866pF 
 C3=0.0969pF C3=0.0893pF C3=0.0858pF 
 C4=0.1206pF C4=0.1525pF  
 C5=0.1206pF C5=0.1525pF  
 C6=0.1274pF C6=0.0398pF 

After performing node voltage scaling and capacitance minimization, with a minimum capacitance of 100fF, the capacitances 
are: 

 
 Biquad 1 Biquad 2 Single pole 
 C1=157.1fF C1=160.8fF C1=-108.7fF 
 C2=0pF C2=0pF C2=217.5fF 
 C3=100.0fF C3=350.9fF C3=100.0fF 
 C4=160.1fF C4=298.4fF CA=1.166pF 
 C5=249.5fF C5=383.2fF 
 C6=211.5fF C6=100.0fF 
 CA=1.662pF CA=1.957pF 
 CB=1.660pF CB=2.513pF 
 

Transistor models for the TSMC .35µm process are used for the switches.  The devices modeled in these examples have a gate 
width, W, of 5um, and a channel length, L, of 0.4um.  These switches are controlled by a square wave clock that goes from         
–1.65V to +165V with rise and fall times of 10pS and a period of T=22.2ns. 

 

III. PERIODIC STEADY STATE ANALYSIS 
 A PSS analysis is used to compute the periodic operating point that small signal analyses, such as the periodic AC analysis, will 
be linearized about.  This is the equivalent of computing the DC operating point prior to an AC analysis using SPICE.  This 
analysis must precede any of the other periodic small signal analyses. 
 
The periodic steady state analysis uses a time domain analysis technique called the shooting method.  The basis of this technique 
is that a periodic equation satisfies v(t)=v(t+T), where v(t) is a periodic function, and T is the period.  The shooting method finds 
a set of initial conditions, v(0), that results in steady-state behavior.  This is an iterative process that starts with a v(0) and 
calculates v(T) as well as dv(T)/dv(0), the sensitivity of the final state at time T to the initial state.  As shown in [1], the iteration 
equation formed is 

 
(3) 
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where r is the iteration number, Jφ(v0) is the sensitivity, I is the identity matrix, and Φ is the state transition matrix, with 
v(t1)= Φ(v(t0),t1,t0) and ΦT(v(0),0)= Φ(v(0),T,t0). This is simply the application of Newton’s method to the equation 
ΦT(v(0),0)=v(0).   
 
The function ΦT(v(0),0) is the solution to the equation f(v(t),t)=i(v(t))+dq(v(t))/dt+u(t)=0 over the interval t0 to t0+T.  This 
equation is typically solved also using the Newton method.  This means that the shooting method described, also called the 
shooting-Newton algorithm, is a multilevel Newton algorithm.   
 
The shooting method has several advantages over other periodic steady state methods, such as harmonic balance.  The shooting 
method is able to handle circuits that are strongly nonlinear.  This is because even though the circuit is strongly nonlinear, the 
function ΦT(v(0),0) is usually near linear.  This means that the Newton method used to evaluate the periodic operating point will 
converge in a few iterations.  The evaluation of ΦT(v(0),0) requires solving the differential equation  
 

 
 

(4) 
which may be strongly nonlinear. However, this is done using a transient analysis, which is quite robust.  The equation for 
f(v(t),t) is Kirchov’s current law. 
 
The shooting method, since it is based on a transient analysis, is able to handle circuits with inputs that change sharply, such as 
square waves.  During the sharp transition, the transient analysis, used to evaluate ΦT(v(0),0), can take smaller time steps to 
achieve better accuracy.  While the circuit is not changing so sharply, the transient analysis is able to take larger time steps, and 
therefore speed up the simulation. 
 
The disadvantages of the shooting method are that other methods, particularly harmonic balance, are more efficient for smaller, 
linear circuits.  In fact, if a circuit is linear and has sinusoidal currents and voltages, then a harmonic balance analysis is exact, 
where as the shooting method may not be.  However, this is only advantageous for very specific systems.  Further, the shooting 
method has difficulty handling distributed components.  With distributed components, the state vector is infinite dimensionally.  
With a large state vector, the shooting method becomes computationally expensive.  Harmonic balance on the other hand, 
naturally handles such devices.  However, in IC analysis, most devices can be represented as lumped devices, and so the shooting 
method works well. 
 
SpectreRF implements the shooting-Newton algorithm in its periodic steady state analysis.  The PSS analysis starts with an 
initial transient analysis [2].  The transient analysis starts at tstart and lasts till tstab+max(tstart,tonset) where tstart is the time at which 
the transient analysis starts, tonset is the time at which all sources have become periodic, and tstab is additional time that the 
transient analysis runs.  Both tstart and tstab are user specified, while tonset is automatically calculated by SpectreRF.  After the 
initial transient analysis, the shooting interval begins.  During the shooting interval, SpectreRF implements the shooting-Newton 
algorithm.  The tstab parameter is a user specified parameter that gives Spectre additional time for stabilization.  It allows extra 
time for initial transients to decay or circuit startup.  For example, an oscillator requires enough time for the oscillations to grow. 
 
There are other periodic steady state analyses, such as the quasi-periodic steady state analysis and the reader is referred to [1,3] 
for more information regarding these analyses. 

IV. PERIODIC SMALL SIGNAL ANALYSES 
An electrical network can be modeled by Kirchov’s current law [1], which is mathematically stated in the equation 
 

 
 

(5) 
where v(t) are the node voltages, dq(v(t))/dt represents current from charge storing devices, i(v(t)) represents currents from 
conductances, and e(t) represents excitation currents.  f(v(t),t) is, in general, a nonlinear, time-varying equation.  For periodic 
circuits, v(t) can be solved with methods such as the shooting method, which was discussed in section III.  If the solution to 
f(v(t),t) for a specific, periodic input, eo(t), and a specific circuit that is periodic with a commensurate period to eo(t), is denoted 
vo(t), then f(v(t),t) can be expanded into a series about the solution vo(t).  This is written as 
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(6) 
 

Noting that f(vo(t),t)=eo(t), equation (6) can be rewritten as 
 

 
(7) 

 
Under small signal conditions, v(t)-vo(t) is a small quantity, and (v(t)-vo(t))n

 is negligible for n>1.  This leads to the small signal 
approximation, specifically 

 
 

(8) 
 
where ∆v(t)=v(t)-vo(t).  Clearly equation (8) is a linear equation of ∆v(t).  In deriving equation (8), the assumption was made that 
(v(t)-vo(t)) is a small quantity.  This is true if vo(t) is a large signal, and v(t)~vo(t), in other words, v(t) is a perturbation of vo(t). 
Equation (8) can be rewritten as 
 

 
 

(9) 
 
Since the large signal excitation, eo(t) is periodic and the system responds in a periodic manner, with a period that is 
commensurate with eo(t), vo(t) is periodic as well.  If the period of vo(t) it To, then dCo(t)/dt and Go(t) are periodic with period To. 
This is shown as 

 
 

(10) 
 
If Co(t) is periodic with period To, then so is it’s time derivative.  A similar proof can show that Go(t) is periodic with period To. 
 
Equation  (9) is a periodically time-varying, linear system in ∆v(t).  Since the system is linear and periodic, ∆v(t) is, when 
excited by the complex exponential tj

s
seU ω , a sum of complex exponentials given by [1,4,5] 

 
 

(11) 
 
where ωo=2π/To is the fundamental frequency of the periodic steady state, vo(t). This result is 
proved in appendix A.  As  (11) shows, there are output tones at ωs-nωο.  These are sidebands produced by the time-varying 
nature of the system.   
Taking equation (11) and evaluating at t=t+To 

 
(12) 

 
 
Equation (12) shows that a complete solution for ∆v(t) over all time can be derived from the solution of ∆v(t) over any time 
interval of To.  Furthermore, equation (12) can be rewritten as 
 

(13) 
 
Equation (13) can be solved using the shooting method described in section III [1].  There are other methods, such as harmonic 
balance that can solve equation (13) as well. 
 
Once ∆v(t) is solved for over an interval To, the Fourier coefficients, Vn, in equation (11) can be solved for using methods such 
as the discrete Fourier transform or the Fourier integral.  The transfer function from the input to the output at sideband n is then 
given as  
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(14) 
 
The small signal frequency can be swept, and the Hn(jωs) can be calculated at the frequency points of interest.  In this manner the 
frequency response can be calculated for the system.  This analysis computes the response from a source to every node in the 
system, and is called a periodic AC analysis. 
 
An extension of the periodic AC analysis is the periodic transfer function analysis.  This analysis computes the transfer function 
from every source in the circuit at the sidebands of interest to the output at the baseband frequency.  This analysis is a periodic 
AC analysis computed on the adjoint network [3,6,7]. 
 
The periodic noise analysis is another small signal analysis that computes the noise power from the components in a circuit to the 
output.  The periodic noise analysis uses an adjoint network to compute the transfer function from all noise sources at all 
sidebands to the output at the baseband.  The output noise can then be calculated as  
 

 
(15) 

 
where Si(ω) is the power spectral density of noise source i, and Hi(jω) is the transfer function from noise source i to the output.  
The noise produced from a time-varying system is typically cyclostationary in nature.  
 
The key assumption made in deriving the results in this section is that the system can be approximated by the first order term in 
the power series.  This assumption implies that the output is a near linear relationship to the input.  Another assumption made in 
these derivations is that the system responds periodically to a large signal periodic input. 
 
There are other small signal analyses as well, such as the periodic s parameter analysis.  The reader is referred to [2,3,8] for more 
information on other small signal analyses. 

V. SIMULATION OF SWITCHED CAPACITOR CIRCUITS 
As mentioned in the introduction, switched capacitor circuits are difficult to simulate due to their time varying nature.  During 
one clock phase, the capacitors are switched to a charging position, and during another clock phase, they are switched to a 
discharging position.  SpectreRF is able to simulate these circuits with its periodic steady state analysis and periodic small signal 
analyses. 
 
The switched capacitor circuit is driven by a large signal, the clock.  The clock is used to turn on and off switches, which are 
typically MOSFETs.  The circuit responds in a strongly nonlinear manner to the clock.  The switched capacitor circuit is also 
driven by an input signal.  The circuit is designed to respond in a linear fashion to the input signal.  This situation represents a 
periodically varying system that SpectreRF can simulate.   
 
In order to simulate this circuit, the input signal should be set to zero, and the a periodic steady state analysis should be run with 
the clock alone driving the circuit.  After the periodic steady state solution has been calculated, the input signal should be 
applied, and a periodic AC analysis can be run.  This will give the frequency response of the switched capacitor circuit.  In doing 
this analysis, several assumptions have been made.  The first assumption is that the switched capacitor circuit responds in a 
periodic manner to the clock.  This assumption is obviously true.  The effect of the clock on the switched capacitor circuit is to 
change the conductances of the switches, either turn on the transistors, or turn them off.  The signal path is defined by the 
transistors that turn on.  Since the clock is periodic, the signal path in the circuit will be periodic.  This means that the circuit will 
respond in a periodic manner with the same period as the clock.  Another assumption made concerning the periodic steady state 
analysis is that the periodic response is a near linear function.  This assumption is also true.  With no input applied, there is no 
source to charge the capacitors.  Since no capacitors are charging, the state of the circuit will be the same at the beginning and 
end of the period.  These are the only assumptions made concerning the periodic steady state analysis.  The small signal analyses 
makes another assumptions about the circuit.  The assumption is that the circuit responds linearly to the input.  Switched 
capacitor circuits are typically designed to do this.  Thus this assumption is true by design.  
 
The circuits presented in section II were simulated in SpectreRF and Switcap.  The circuit transfer functions were used in Matlab 
to computer the ideal frequency response.  Figures 3-4 show the SpectreRF results of the biquad filter and the 5th order elliptical 
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filter respectively.  These graphs were imported into Matlab, and compared against the results from Switcap and Matlab.  These 
comparisons are shown in Figures 5-8 respectively.  As the graphs show, there is good agreement between Switcap, Matlab, and 
SpectreRF. 
 
Figures 9 and 10 show the results of a periodic noise analysis for the biquad filter and the 5th order elliptical filter.  As the graph 
shows, the noise in the circuit consists of white noise that has been shaped by the filter. It is obvious from the graph that flicker 
noise has not been incorporated into the transistor model.  There is also some peaking around the cutoff frequency.  The graphs 
also show the effect of the number of sidebands used in the noise calculations.  The periodic noise analysis takes into account the 
noise folding due to the time-varying nature of the circuit.  Therefore, the more sidebands used in the calculation, the more 
accurate the answer will be.  However, the accuracy increases little after so many sidebands are taken into account. 
 
Another capability of SpectreRF is its ability to calculate distortion.  The method used to calculate distortion is to run a 
quasiperiodic steady state analysis.  In the quasiperiodic steady state analysis, one large signal is applied and multiple moderate 
tones are applied to the circuit.  The steady state is then calculated, and the output tones can be displayed.  Figure 11 shows the 
results of such an analysis when a 1V sinusoid with a frequency of 100KHz is applied to the input.  As can be seen, there are 
tones at multiples of the fundamental. 

VI. CONCLUSION 
This paper has compared several methods to simulate switched capacitor circuits, including a new tool, SpectreRF, aimed 
specifically at RF and switched capacitor circuit simulations.  It has also described some of the theory behind the SpectreRF 
simulator.  Two switched capacitor filters have been simulated in order to demonstrate the SpectreRF analyses.  The paper also 
verified that the switched capacitor filters simulated did not violate the assumptions made in the derivation of the simulation 
algorithms.  The results were presented, and the transfer functions obtained by SpectreRF were compared to those obtained from 
Switcap and Matlab.  The results were in close agreement showing that SpectreRF provides valid simulation results for AC 
analysis.  This paper has validated some of the theory and math behind SpectreRF, but has not verified these results with 
physical circuits.  SpectreRF’s simulations would have to be verified by comparison with actual circuit results, which is beyond 
the scope of this paper. 
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Figure 1. Low pass switched capacitor biquad filter 

 
Figure 2. Low pass single pole switched capacitor filter 
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Figure 3. SpectreRF simulation results for a biquad switched capacitor filter. 

 
Figure 4. SpectreRF simulation results for a 5th order elliptical switched capacitor filter. 
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Figure 5. Comparison of biquad magnitude transfer 
function of SpectreRF, Switcap, and Matlab.  
  

 
Figure 6. Comparison of biquad phase transfer function of 
SpectreRF, Switcap, and Matlab. 
 
 

 
Figure 7. Comparison of 5th order elliptical filter 
magnitude transfer function of SpectreRF, Switcap, and 
Matlab. 

 
Figure 8. Comparison of 5th order elliptical filter phase 
transfer function of SpectreRF, Switcap, and Matlab 
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Figure 9. Output noise of the biquad filter. 

 
Figure 10. Output noise of a 5th order elliptical filter. 
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Figure 11. Results of the quasi-periodic steady state analysis.  The distortion components are shown at multiples of the 

100KHz fundamental. 
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Appendix A 
 
The goal of this appendix is to show that a periodically varying linear system responds to a complex exponential input with a 
series of complex exponential outputs.  The proof starts by showing that convolution with the impulse response in the time 
domain translates to multiplication with the system function in a transformed domain.  The proof then uses the Fourier transform 
kernel to analyze an arbitrary periodically varying system.  The proof shows that a periodically varying impulse response will 
result in a periodically varying system function in the Fourier domain.  The system function is then turned into a Fourier series.  
It is then shown that the system, when excited by a complex exponential, will result in a series of complex exponentials at the 
output. 

 
The integral transform is defined as  

      (1) 
 
 

 
where K(t,λ) is the kernel of the transformation and λ is the variable of the transformed domain. The inverse integral transform is 
given as 
       (2) 

 
 

where k(t,λ) is the inverse transform kernel and C is an appropriately chosen contour in the λ-domain. 
 

A linear system’s output is related to its input through the convolution integral. This is shown as     
(3) 

 
 
 

Using equation (2) to replace x(τ) in equation (3), y(t) can be written as: 
     

(4) 
 
 

If the order of integration is changed, then y(t) is 
  

    (5) 
 
 
 

But the inner integral in (5) can be rewritten as follows 
  (6) 

 
 
 

where G(λ,t) is defined as  
 

(7) 
 
 

It can be easily seen that if the system is stimulated by an input signal equal to the inverse kernal, k(t,λ), then G(t,λ) is the output 
response of the system divided by the inverse kernal; that is, 

 
      (8) 

 
 
 

In this definition, λ is treated as an input parameter. 
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Equation (6) shows that the output is equal to inverse transform of the system function multiplied by the transformed input.  This 
means that the input/output relationship of convolution in the time domain turns into multiplication in the transformed domain.   

 
An interesting point to be noted in the derivation of equation (6) is that no restriction has been placed on the system other than it 
has to be linear. 

 
If the inverse transform kernel is chosen to be ejωt, then λ=jω and the inverse transform is the inverse Fourier transform.  With 
that particular inverse transform kernel, the transform kernel is e-jωt.  With this transform, the system function in equation (7) 
becomes: 

 
      (9) 
 
 
 

If h(t,τ) is periodic, then it remains unchanged by a shift of a period.  This means that 
 

     (10) 
 

If h(t,τ) is periodic, then under the Fourier transform, G(jω,t) is periodic with respect to t.  This is shown as 
   (11) 

 
 
 

Choose τ=u+nT and dτ=du, then equation (11) becomes 
    

(12) 
 
 

Using equation (10), equation (12) can be rewritten as 
    (13) 

 
 
 

Equation (13) shows that a periodic impulse response produces a periodic system function when the Fourier transform kernel is 
used.  Since G(jω,t) is periodic with respect to t, it can be expanded into a Fourier series.  Therefore, a periodic system function 
can be written as 

      (14) 
 
 
 

If an input of tj se ω  is applied to a linear system, then, using the relationship from equation (6) the output can be written as  
      

(15) 
 
 
 

where δ(ω−ωs) is the Fourier transform of the complex exponential.  The integral of equation (15) can be evaluated and y(t) 
becomes 

     (16) 
 
 

If G(jω,t) describes a periodic system, then equation (14) can be substituted in equation (16) and the output can be shown to be 
     (17) 
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Since gn(ωs) is a constant, and 2π/TL can be written as ωL, equation (17) can be rewritten as 
 

      (18) 
 
 

Equation (18) shows that a periodically time-varying system with a complex exponential input at frequency ωs will produce 
outputs at tones K,2,, LsLss ωωωωω ±±  

 
Equation (18) shows that a periodically varying system with a complex exponential input produces a series of complex 
exponentials at the output. 
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