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Abstract—This paper shows how the relative size of components 
can be used to increase matching performance – saving orders of 
magnitude in component area.  The relative size information can 
be found by ordering the elements from smallest to largest.   A 
circuit to do this is described. Properties of ordered devices are 
summarized.  Improvements are quantified for simple feedback 
circuits and matched devices constructed from ordered sub-
elements.  The INL of a 17-level D/A converter is simulated, and 
the methods are shown to increase linearity by 5 bits. 

I. INTRODUCTION

Component mismatch is often a performance-limiting 
factor in analog circuits such as A/D and D/A converters. 
Component mismatch can be dealt with in various ways 
including making the devices larger [1], digital calibration [2], 
error averaging [3], data weighted averaging [4] or self-
configured capacitor matching [5]. This work shows how the 
information contained in the relative sizes of elements (easily 
obtained by ordering them from smallest to largest) can be 
used to cancel the mismatches, giving matching performance 
equivalent to elements orders of magnitude larger. 

Section II shows how using the relative size of devices to 
determine where they are placed improves performance.  
Whereas most matching schemes are less effective at higher 
ratios, this method is more effective.  Section III highlights 
some important properties of ordered elements.  Section IV 
shows how grouping the ordered elements and reordering 
them can improve matching even more.  Section V uses the 
introduced concepts to improve the INL of a 17 level D/A 
converter from 10 bits to more than 15 bits.  Finally, section 
VI shows how to determine the relative sizes of the elements. 

II. STRATEGIC ELEMENT PLACEMENT

A. Average mismatch cancellation 
Performance can be increased substantially if the relative 

sizes of the devices are known. Consider, for example, the 
simple 1.5-b MDAC in Fig. 1 [9]. We can improve the gain 
error tolerance by arranging the capacitors so that the 
mismatch error of the top pair is of the opposite sign of the 
bottom pair. This is done by picking the top feedback  

Figure 1. Fully differential gain of two circuit and the reduced spread when 
the capacitors are arranged based on relative size.  The factor of 1.6 
improvement in matching means that capacitors can be 2.56x smaller. 

capacitor to be the larger of the two top capacitors, and the 
bottom feedback capacitor to be the smaller of the two bottom 
capacitors. As will be shown in section VI, the capacitor 
relative size can be determined using the op-amp. 

As Fig. 1 shows, this simple change in configuration 
makes the distribution much peakier. At the 98 percentile, the 
spread is reduced by a factor of 1.6. To get this same spread 
without sorting one would have to increase the size of the 
capacitors by a factor of (1.6)2 = 2.56. The power would also 
have to be increased by at least the same factor to maintain the 
same speed. The distribution was determined with Monte 
Carlo simulations, although in this case it could have been 
derived by convolving two half-Gaussian distributions. 

B. Selecting the median device 
The procedure works even better when higher ratios are 
desired.  This is very fortunate because achieving accurate 
high ratios is difficult because the mismatch is largely 
determined by the smallest element (C2 in Fig 2).  As a result, 
the other element (C1) must be must larger than would 
normally be required based on matching considerations alone.  
However, if one is able to choose which device is used for C2
the matching performance increases substantially as the 
number of choices is increased.  This makes sense since more 
choices will increase the odds of finding a well matched  
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Figure 2. Gain of sixteen circuit and the reduced spread when the feedback 
device is choosen to be the median element of the ordered devices.  
Capacitors can be made nearly 30x smaller when this is done. 

device.  One application of this is shown in Fig. 2, which is a 
gain of sixteen circuit.  As can be seen, the spread is reduced 
by a factor of 5.3 when the feedback device is chosen based 
on the relative sizes of devices.  This means capacitors 1/30th

the size can achieve the same matching performance as 
unordered devices.   

Ideally, the feedback device would be chosen to be the one 
closest to the mean value of the other devices.  This cannot be 
found if we only know the relative device sizes; however, the 
median device is easily found from an ordered set as it will 
rank half-way, and using this device gives very good results.   

The circuits in Fig.1 and Fig. 2 have an even number of 
elements so a single median device does not exist.  This case 
is easily handled by choosing the devices as shown in Fig. 2.  
The top feedback device is the 8th largest of 16, whereas the 
bottom feedback is the 9th largest of 16.  While each choice 
will give a mean error, the errors are of the opposite sign and 
cancel.   

C. Other applications 
The popular op-amp sharing topology (Fig. 3) [5] allows 

one to take advantage of ordering with little added complexity. 
To do this, one would rank the four upper capacitors from 
smallest to largest and choose the first stage devices to be the 
second and third largest devices (i.e. the middle devices). This 
will be repeated for the bottom four devices. As in the 
previous examples, the mismatch of the top pair will be the 
opposite sign of the mismatch of the bottom pair. Doing this 
will decrease the spread by a factor of 2.6 for the first stage, 
and 1.6 for the second stage. The second stage will have 
greater mismatch than the first stage since it uses the  

Figure 3. Op-amp sharing topology that allows for reduced spread by 
choosing the first stage capacitor pair from a group of four devices. No sub-
elements are used in this example. 

outliers. This is acceptable because the second stage has less 
stringent matching requirements than the first stage. The net 
effect is a 1.4 bit improvement in matching with little 
overhead.  The ∆Vgs (β multiplier) bias [10] and bandgap 
references are other applications where it would be desirable 
to select the median device to decrease spread from mismatch. 

III. ORDER STATISTICS

A. Properties of ordered elements 
For the purposes of this paper, the form of an ordered (i.e. 

sorted) array of length 2*N will be  

C-(N), C-(N-1), … C(N-1), C(N) ,  

where C-(N) is the smallest device, C-(N-1)  is the second smallest 
device, etc. If the length of the array is 2*N+1, the center 
(median) device will be denoted as C0. There are three 
important properties of sorted (ranked) devices chosen from a 
population of normally distributed devices.  

1) Sorting reduces the standard deviation of the devices. 
That is, one knows the size of the ith element of an array with 
more certainty if the array is sorted.  

2) With respect to C0, the mean value of the ith largest has 
the opposite sign of the ith smallest (aka -ith) device. That is, 
E(C-(i) + C(i)) = C0, where E is the expected value operator.  

3) The middle devices have a lower standard deviation 
than the devices towards the endpoints of the array.  

Properties 1-3 are shown graphically in Fig. 4 for a 
normally distributed random variable with 100,000 Matlab 
Monte Carlo simulations. Note that the plots are normalized to 
a mean value of zero and a standard deviation of one.  

The practical use of the second property is that we can 
group the ith device with the -ith device and construct a 
composite capacitor with much better matching properties 
than if we had simply doubled the area. It also follows that 
multiple devices could be constructed. For example, one could 
create four well matched devices by sorting eight elements 
and grouping the ith and the -ith devices together. Further 
improvement could be expected if the four devices were 
sorted and grouped again, producing a single pair of devices. 
The sequence to do this is shown in Fig. 5.  

The consequence of the third property is that, if possible,
the critical capacitors should be selected from the middle 
devices of a sorted array. (In fact, significant reduction in 

Figure 4. The expected mean and standard deviation of an (a) 16element 
sorted array, (b) 128 element array.  
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standard deviation can be achieved by simply not using five or 
so outliers, although this isn't done in this paper.) Using the 
middle devices for the more critical first stage MDAC was 
illustrated earlier in Fig. 3. Further improvement can be 
obtained by sorting and grouping more elements to create the 
capacitors, before setting their positions. This is explained in 
the next section. 

IV. SORTING AND GROUPING

A. Better matched pairs using subelements 
The term sorting and grouping was used by Cong to 

describe a method to reduce D/A converter integral 
nonlinearity (INL) [8]. This work improves that methodology 
significantly by using a simpler sorting routine, and repeated 
applications of it to eliminate nonlinear gradients.  

Sorting and grouping arranges devices so that their 
mismatches tend to cancel. For example, if four devices are 
sorted from smallest to largest we can construct an improved 
matched pair by grouping the smallest and largest together for 
one capacitor, and make the second capacitor from the two 
middle capacitors. This improvement can be predicted by the 
use of order statistics [7]. However, it is much more practical 
to use Monte Carlo simulations to investigate the properties 
because order statistics does not generally provide closed form 
solutions for these problems.  

Fig. 5 shows how sorting and grouping can be used to 
construct two well matched devices from 8 devices.  Fig. 6 
shows the improvement when sorting and grouping is used to 
create the matched capacitors for the circuit in Fig. 1.  The 
upper left point corresponds to the factor of 1.6 improvement 
described in section II-A.  As can be seen from Fig.6, the 
spread is inversely proportional to the number of elements 
used.  This result is NOT from increased area – the total 
capacitance is kept the same for each case.  In other words, 
matching is significantly improved by breaking a capacitor 
into many small pieces and using sorting/grouping methods to 
construct a matched pair.   

Figure 5. Sort and group operations to create two well matched capacitors 
from 8 sub-elements. 

Figure 6. Reduction in σ obtained for the circuit in Fig. 1 when the 
capacitor is broken into subelements and sorted.  Spread is roughly inversly 
proportional to the number of subelements used, even though total capacitor 
area stays the same. 

B. Improved D/A Converters 
The sorting and grouping operation orders elements well 

for use in very linear thermometer coded D/A converters.  
Such D/A converters would be valuable for Nyquist-rate or 
low over-sampling-ratio applications where data weighted 
averaging [4] does not work well.  The final order of 
capacitors in a nine-level thermometer coded D/A converter 
is shown in Fig. 7.  Different ordering schemes such as 
switching the direction of the sort after each grouping, or 
repeated usage of the ordering presented in [8], can offer 
small improvements in special cases. 

V. A HIGHLY LINEAR 17 LEVEL D/A CONVERTER

The principles described in this paper were used to design 
the highly linear 17 level D/A converter shown in Fig. 8.  The 
results were simulated with MATLAB.  The histograms show 
that the baseline INL performance is about 10 bits when the 
32 unit capacitors per side are unordered (i.e. traditional 
configuration).    Ordering these capacitors in addition to 
using the outliers for the less critical feedback capacitor adds 
3 bits of linearity.  Another two bits can be obtained by using 

Figure 7. Using the sorting and grouping algorithm to order elements for a 
highly linear nine level D/A converter.   
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Figure 8. Highly linear 17 level D/A converter and INL histograms.  
Unordered capacitors limit INL to 10bits (98% yield).  Simple ordering (Fig. 
6) the same capacitors increases linearity by 3 bits.  Further improvement is 
obtained by creating a 33 level (N=32) D/A converter, and only using the 
even levels.  Total capacitance is the same for all three D/A converters. 

64 half-sized unit capacitors instead of 32.  To get the same 
INL performance, capacitance area would need to be 
increased by a factor of 1024.  Further performance increases 
could be expected using 128 quarter-sized unit capacitors, 
etc.   

VI. CAPACITOR SORTING CIRCUIT

The operational amplifier can be configured to sort the 
sub-element capacitors from largest to smallest. This is done 
by comparing the relative size of each capacitor to the other 
capacitors. If there are N capacitors, it will take N*(N-1)/2 
comparisons to completely characterize the array if all 
possibilities are checked. Bubble sorts, etc. can be used to sort 
the array with less comparisons.  

A circuit to compare sub-element capacitors C1 and C2 is 
shown in Fig. 9. It has two phases. The first phase autozeros 
the op-amp offset and pre-charges C1 and C2 to -VREF and 
VREF respectively. Phase two reverses the polarity of the 
charge, and if C2 is larger than C1, the voltage at the inverting 
node of the op-amp will increase. Accordingly, the op-amp 
will function as a comparator and output a logic zero. A 
counter register corresponding to C2 will then be incremented. 
This procedure will be repeated to check all permutations of 
the top-half capacitors. The procedure will be repeated for the 
bottom-half capacitors. At the end, each counter register will 
contain the rank of its respective capacitor.  

C3 and C4 are necessary to negate the effects of charge 
injection. They are nominally equal to C1 and C2. Noise of the 
operational amplifier will limit the measurement accuracy, but 
one would expect the noise performance of the amplifier to be  

Figure 9. Capacitor ranking circuit created using existing operational 
amplifier. 

at least as good as the desired capacitor matching, or there 
would be no benefit to increased matching. Slower rate 
measurements, or multiple measurements could be taken with 
a majority vote strategy to reduce noise. 

VII. CONCLUSIONS

The effects of component mismatch can be reduced using 
relative size information.  When done, these components can 
match as well as components orders of magnitude larger. 
Sorting can be done by comparing each capacitor to the others 
in an array. This is possible using the op-amp present, and will 
take N*(N-1)/2 operations to sort N capacitors.  
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