(CS325: Analysis of Algorithms, Fall 2017

Group Assignment 1*

Due: Tue, 10/10/17

Homework Policy:

1. Students should work on group assignments in groups of preferably three people. Each group submits to
TEACH a zip file that includes their source code and their typeset report. Each group, also, hands in a printed
hard copy of the report in class or slides the hard copy under my door before the midnight of the due day.
The hard copy will be graded, and the codes submitted to teach will be tested.

2. The goal of the homework assignments is for you to learn solving algorithmic problems. So, I recommend
spending sufficient time thinking about problems individually before discussing them with your friends.

3. You are allowed to discuss the problems with other groups, and you are allowed to use other resources, but
you must cite them. Also, you must write everything in your own words, copying verbatim is plagiarism.

4. I don’t know policy: you may write "I don’t know” and nothing else to answer a question and receive 25
percent of the total points for that problem whereas a completely wrong answer will receive zero.

5. Algorithms should be explained in plain english. You can use pseudocodes if it helps your explanation, but
the grader will not try to understand a complicated pseudocode.

6. More items might be added to this list. @

Finding the kth smallest element of a sorted array A[l...N] is easy. In fact, there is an O(1)
time algorithm: return A[k]. If A is not sorted, however, we need to spend O(N) time to examine
all elements of A. But, what if A is “somewhat” sorted? For example, can we do better than O(N)
if A is composed of large sorted subarrays?

Specifically, let A1[1...n], A2[1...n],..., An[l...n] be m sorted arrays, each of length n. Also,
let 1 < k < mn. We would like to find the kth smallest element in the union of all these arrays,
AjUAyU...UA,,. In particular, if m = 1, we have only one sorted array, so we can use the O(1)
time algorithm mentioned above. Also, if n = 1, we have an unsorted array, so we need to examine
all its elements. But, what should we do in intermediate cases?

In this assignment, you describe and analyze an algorithm to find the kth smallest number
of all numbers in m sorted arrays, each of length n. For example, given m = 2, n = 3, k = 5,
Ay =[1,6,7] and Az = [2,2,2] your algorithm must return 6. For full credit, the running time
of your algorithm should be O(m® log® n) for a small constants ¢; and c¢3. Note the polynomial
dependency on m and the logarithmic dependency on n. What is the smallest ¢; and ¢y that you
can get?

*The problem is from Jeff Erickson’s lecture notes. Looking into similar problems from his lecture notes on
recursion is recommended.

http://web.engr.illinois.edu/~jeffe/teaching/algorithms/notes/01-recursion.pdf

Report (60%). In your report, include the description of your algorithm, and provide running
time analysis. Algorithms should be explained in plain english. You can use pseudocodes if it helps
your explanation, but the grader will not try to understand a complicated pseudocode.

Code (40%). Write a program to find the kth smallest element of the array. Your program will
be tested against several test cases, for correctness and efficiency. For each test case, the program
will be automatically stopped after 20 seconds if it is not done in that time. In this case, the
group will miss the points of that test case. Your program must be written in one of the following
languages: Python, C++, or Java.

Input/Output Your program reads from multiple txt and binary input files. The input file
“input.txt” contains three numbers 1 < m < 10, 1 < n < 108, and 1 < k < mn in this order,
separated by commas. There are m binary files, “l1.dat”, “2.dat”, ..., “m.dat”, each composed of
exactly 4n bytes with each four consecutive bytes representing an integer. Integers are stored in
big endian format: the most significant byte is at the lowest address.

Your output must be written in “output.txt”. The output is a single number: the value of the
kth smallest number in all the binary files “l.dat”, “2.dat”, ..., “m.dat”.

Sample Input (1):

“Input.txt”: 2,2,3

“l.dat”: 0000 0001 0000 0007 # 1,7
“2.dat”: 0000 0002 0000 0006 # 2, 6

Sample Output (1):
“output.txt”: 6

Sample Input (2):

“input.txt”: 3,5,14

“l.dat”: 0000 0001 0000 0004 0000 0007 0000 000a 0000 000d # 1,4, 7
“2.dat”: 0000 0002 0000 0005 0000 0008 0000 000b 0000 000e # 2, 5, 8, 11, 14
“3.dat”: 0000 0003 0000 0006 0000 0009 0000 000c 0000 000f #3,6,9

Sample Output (2):
“output.txt”: 14

In the examples above, the binary files are shown in hex format. The list of numbers after “#” are
not in input files, they are given to improve readability of the examples. As mentioned each binary
file is composed of exactly 4n bytes.

Submission Each group submits to TEACH a zip file that includes their source code (which
must be just one file with name “select.cpp”, “select.java”, or “select.py”) and their report in pdf
format. This file can be submitted by any member of the group, but all names must be listed in
the submitted report. Each group, also, hands in a printed hard copy of the report in class or slides
the hard copy under the door of my office before the midnight of the due day. The hard copy will
be graded, and the submitted code to teach will be tested.

Your codes will be tested automatically. So, you need to carefully follow all formatting require-
ments mentioned above. To summarize:

(1) Your source code file should be named “select.cpp”, “select.java”, or “select.py”.

(2) It reads from files “input.txt”, “l.dat”, “2.dat”, ..., “m.dat” in the current folder. The format
of the input files will be exactly as specified above.

(3) It writes to the file “output.txt” in the current folder. It should write exactly one number
into “output.txt”, with no extra symbol.

Test your code with the sample test files (http://web.engr.oregonstate.edu/~nayyeria/
CS325/Falll7/hws/testl.zip) before submitting them, to make sure there is no formatting error.

Comments/hints:

(1) Note that the binary files may be very big. Hence, it is not possible to read the entire file
into an array, because of the time constraint. To overcome this issue, you need to use random
access binary files. You can open a file in binary mode, and use the command “seek” to access
different addresses in the file.

(2) For designing the algorithm, first, consider the case that m = 2.

http://web.engr.oregonstate.edu/~nayyeria/CS325/Fall17/hws/test1.zip
http://web.engr.oregonstate.edu/~nayyeria/CS325/Fall17/hws/test1.zip

