CS515: Algorithms and Data Structures Final Exam

The exam is TWO pages.

Problem 1. Let G = (V, E) be a directed graph, and let $s, t \in V$ be two vertices of G. For every $(u \to v) \in E$, let $\ell_{u\to v}$ denote the length of the edge $(u \to v)$. Recall the following LP formulation for the (s, t)-shortest path problem.

 $\begin{array}{ll} \mbox{maximize} & d_t - d_s \\ \mbox{subject to} & d_v - d_u \leq \ell_{u \rightarrow v} & \mbox{for every} & (u \rightarrow v) \in E \\ & d_v \geq 0 & \mbox{for every} & v \in V \\ \end{array}$

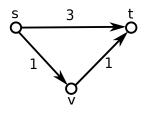
- (a) What is the number of variables and the number of constraints of this LP?
- (b) Write the dual of this LP? What is the number of variables and constraints of the dual?

We can reduce the number of variables of this LP by setting $d_s = 0$ as follows:

maximize
$$d_t$$

subject to $d_v - d_u \le \ell_{u \to v}$ for every $(u \to v) \in E$
 $d_v \ge 0$ for every $v \in V$
 $d_s = 0$

Consider this new LP for the following graph. $(\ell_{(s \to t)} = 3, \ell_{(s \to v)} = 1, \ell_{(v \to t)} = 1)$



- (c) Show all constraints and the feasible region by drawing a figure.
- (d) Show the objective function direction and the optimum solution in your figure.
- (e) Show that $(d_t, d_v) = (0, 0)$ is a feasible point, and show a possible sequence of feasible points that the simplex algorithm can possibly take to reach the optimum from $(d_t, d_v) = (0, 0)$.
- (f) Show that $(d_t, d_v) = (3, 0)$ is a locally optimal point, and show a possible sequence of locally optimal points that the simplex algorithm can possibly take to reach the optimum from $(d_t, d_v) = (3, 0)$.

Problem 2. Let G = (V, E) be a directed graph with edge capacities $c : E \to \mathbb{R}_{\geq 0}$, a source vertex s, and a target vertex t. Suppose someone hands you an arbitrary function $f : E \to \mathbb{R}_{\geq 0}$. Describe and analyze fast and simple algorithms to answer the following questions:

- (a) Is f a feasible (s, t)-flow in G?
- (b) Is f a maximum (s, t)-flow in G? (You algorithm must be faster than computing maximum flow.)
- (c) Is f the **unique** maximum (s, t)-flow in G?

Problem 3. Suppose we are given an $n \times n$ square grid, some of whose squares are colored black and the rest white. Describe and analyze a polynomial time algorithm to determine whether tokens can be placed on the grid so that

- 1. every token is on a white square;
- 2. every row of the grid contains exactly one token; and
- 3. every column of the grid contains exactly one token.

			*				
				*			
*							
	*						
		*					
						*	
					*		

Your input is a two dimensional array IsWhite[1..n, 1..n] of booleans, indicating which squares are white. (IsWhait[i, j] is TRUE if and only if the square at row i and column j is white.) Your output is a single boolean. For example, given the grid above as input, your algorithm should return TRUE.

Problem 4. [Extra Credit] Let G = (V, E) be a directed graph and let $s \in V$ be a vertex of G. For each edge $(u \to v) \in E$, let $c_{(u \to v)}$ be a nonnegative cost of destroying $(u \to v)$. If an attacker destroys a set $A \subseteq E$ of edges, he/she receives a nonnegative benefit b_v for each vertex $v \in V$ that can no longer be reached from s. (Of course, benefits of different vertices can be different.) The attacker wants to choose A to minimize cost minus benefit. Suggest an algorithm.