
CS515: Algorithms and Data Structures

Homework 1

Marjan Adeli (932969351), Rouzbeh Behnia (932987697), and
Abtin Khodadadi (932239415)

October 11, 2016

Problem 1

In order to address this problem, our algorithm uses the �rst element of preorder
node sequence to �nd the root of tree, and locate the root in the inorder node
sequence. Then, in inorder sequence, everything on the left side of the root
element is the inorder node sequence of the left subtree and everything on the
right side of of the root element is the inorder node sequence of the right tree.
We use the length of the left and right subtrees of inorder to locate them in our
preorder sequence and extract the preorder subsequence nodes of left and right
subtrees . We then repeat the same method to the left and right subtrees until
we recived to subtrees by length one, which are leaves all the nodes in the tree.

const_tree(preorder[i..j], inorder[i..j])

root = preorder[i]

if (i 6= j)

iR ← find_index(inorder[i..j], root)

root.LeftChild←

cons_tree(preorder[(i+ 1) ..iR], inorder[i.. (iR − 1)])

root.RightChild←

cons_tree(preorder[(iR + 1) ..j], inorder[(iR + 1) ..n])

return root

Given we have two arrays (reorder[1...n], inorder[1...n]) which contain the pre-
order and inorder sequence of our binary tree, our function const_tree

1



(preorder[1...n], inorder[1...n]) �nds the index root = pre[1], and uses the func-
tion ir ← find_index(inorder[1...n], root) to locate the location of the root in
the inorder array. We then apply the same function for the left and right subtrees
�cons_tree(preorder[(i+ 1) ..iR], inorder[i.. (iR − 1)])� and �cons_tree
(preorder[(iR + 1) ..j], inorder[(iR + 1) ..n])� to extract their roots. This pro-
cess continues until we �nd all the roots of the tree.

Problem 2

Two line Segments i and j intersect if and only if one of the following conditions
hold.

• pi < pj and qi > qj OR

• pi > pj and qi < qj

It is obvious that if i intersects j with the �rst condition, then j would also
intersect i with the second condition. This counts for redundancy. Therefore,
for computing the number of intersections we only consider one of the above
conditions. Here, we consider the �rst one.

We should create an array I [1..n] such that the order of corresponding q of
l-th p is I [l]. In other words, if I [l] = k and pi is the point with l-th smallest
x in p set then qi has k-th smallest x in q set.

Obs 1:
Suppose

• 1 ≤ l1 < l2 ≤ n and

• pi has the l1-th smallest x and

• pj has the l2-th smallest x

If I [l1] > I [l2]then pi < pj and qi > qj : Line Segments i and j intersect.
So the number of intersections is equal to the number of such pairs of (l1, l2)

Or the number of inversions in array I.
For Building Array I,

1. Q [1..n]← sort q set based on x-coordinate.

2. Make Q
′
[1..n] whereas Q

′
[i] is equal to the order of qi in Q

3. P [1..n]← sort p set based on x-coordination.

4. Then ∀1 ≤ l ≤ n P [l] ←Q
′
[P [l]], the index of according q in Q. Now

P [l] shows the order of according q of l-th p.

For Counting the number of inversions in Array I, we can change the merge part
of merge sort algorithm slightly.The Idea is as follow.

• The number of inversions in a sorted array is zero.

2



• If we have two equal sized left and right subarray sorted, and we want to
merge them into a bigger merged array (as in merge part of merge sort),
we move the element from left and right of subarrays to merge arrays
by keeping two pointer to left subarray and right subarray (pointers are
pointing to the smallest remaining elements in left and right subarray),
comparing the numbers which are pointed at, moving the smallest number
to the merged array, and advancing it's corresponding pointer in related
subarray.

• When an element from right array moves to the merged array, this means
that it is smaller than all the remaining elements in the right subarrays,
but is located before them. Therefore, we have the inversions as the num-
ber of remaining elements in left subarray. Note that the the remaining
elements in right subarray are greather than the selected elements, so they
don't lead to inverted pairs.

• When an element from left subarray moves to the merged array, this means
that that element is smaller than all the remaining elements in the left and
right subarrays, but it is located before them in the array, so this elements
are not considered inverted.

• So if in merge part of MergeSort algorithm we start counting the number
of the remaining elements in the left part whenever we move an element
from right part to the merged array(by O (1): by subtracting the index
of pointed element from the index of last elements in the left subarray +
1), at the end of MergeSort algorithm we have the number of inversions
in array.

Running Time of Algorithm:

1. The running time of making P and Q arrays are O (n lg n).

2. The running time of making Q
′
array (by using Q array) is O (n).

3. The running time of making I array (by using P and Q
′
arrays) is O (n).

4. The running time of �nding the number of inversions in Array I by
changing the merged part of MergeSort algorithm, as mentioned above, is
O (n lg n).

Hence, the running time of the entire algorithm is O (n lg n).

Problem 3

new_max← 0;
potential_max← 0;
for (j = 1 to n)
if new_max+A[i] ≥ 0

3



new_max← new_max+A[i]
else new_max← 0
potential_max← max{potential_max, new_max}

return potential_max
Loop Invarient: at the end of lth iteration of the loop we have to invariant:

• Potential_Max = max
1≤i≤j≤l

[

k= i]j
∑

A[k]

• New_max:

{
the maximum of subsequences which end with index l if the value is not negative

0 otherwise

}
if we prove these invarients then it is proved that at the end of nth iteration we

have max
1≤i≤j≤n

[

k= i]j
∑

A[k].

Prof of loop invarients:
Base:
If l = 1we have two option: either A[1]is negative or not. if it is negative the

else statement would be run, so the new_max = potential_max= 0; Otherwise
the if statement would be run and new_max ← A[1] and then in the end
potential_max← new_max.

Hypothesis:
we consider those Invarint hold at the end of K − 1iteration .
Proof: those those Invarint hold at the end of Kth iteration :
At the �rst of kth iteration we have two situations:

1. potential_max = new_max:in this situation we know that the maximum
subsequence ends at A[K−1]. . It is obvious if A[K] > 0 it must be in the
maximum suquence. According to our algorithm in such a situation the
new_max will be updated by adding A[K] and since it's value increases
our potentioal_max will be updated as well. Otherwise, if A[K] <= 0,
potential_max wouldn't be updated.

2. potential_max <> new_max: in this situation we know that the max-
imum subsequence does not end at A[K − 1]. If new_max + A[K] >
potentil_max it means that there is the maximum sequence at the end
of A[1..K] considering A[K]. According our algorithm, potential_max
will be updated to the new_max value. Otherwise the value of our
potential_max will not change.

Running Time of the Algorithm:
Since in the proposed algorithm, we are visiting each number in the sequence

only once, and there is just one iteration on the numbers with constant time,
the overal running time of our algorithm is O(n).

Problem 4

For computing the maximum length palindromic substrring of a given string
A[1...n], we can see if the �rst and last characters of string are equal or not. If

4



yes, then we could consider these two characters as the �rst and last char-
acters of Max Length palindrome and then �nd the Max Palindromic sub-
string of the remaining string and insert it between the �rst and last characters
(A[1].MaxPalindromicSubstring(A[2..n − 1].A[n])). But if the �rst and last
characters of A are not equal, it's impossible for both of them to play role in
palindrome (they may be present or not), so we should solve the problem of �nd-
ingMaxPalindromicSubstring(A[2..n]) andMaxPalindromicSubstring(A[1..n−
1] and select the one with maximum length:

MaxPS[i, j] =



{
MaxPS [i+ 1, j − 1] + 2 if(A[i] = A[j])Max


MaxPS [i+ 1, j]

MaxPS [i, j − 1]

 if(A[i] <> A[j])


However, if we make the recursion tree of this recursive function, we can see

some repetitive recursion which makes the running time of the function slow.
So, it is better to use a matrix P [n, n]for memorizing the results of recursions.
P [i, j] equals to the length of maximum palindromic substring of A[i..j].

• these values, P [i, j]s are only de�nable for 1 ≤ i ≤ j ≤ n

• It is obvious that for each substring with the length 1 that substring is
itself a palindrome of length 1.

So we initialize this matrix{
P [i, j]← 1 i = j
P [i, j]← 0 o.w.

}
Palindrome(i...j)

if(P [i, j] <> 0)

return P [i, j];

if(A[i] = A[j])

return palindrome (i+ 1, j − 1) + 2

else

return max {palindrome(i+ 1, j), palindrome(i, j − 1)}

In fact, in this recursive algorithm, the array A �lls diagonally. The non-
recursive version of this algorithm is:

NRPalindrome(A[1...n])

for(i← 1to, n)

for(j ← i, to, n)

if(i = j)

P [i, j]← 1

5



else

P [i, j]← 0

for(l← 1to, n− 1)

for(i← 1, to, n− l)

j ← i+ l
if(A[i] = A[j])

P [i, j]← P [i− 1, j − 1] + 2

else

P [i, j]← max {P [i− 1, j], P [i, j − 1]}

return P [1, n]

Proof:

MaxPalindromicSubstring(A[1..n] return the maximum length of a palin-

dromic substring of the given strin with length n

Base case: A[1].Every single character is palindromic and our algorithm

returns 1.

Hypothesis: ∀k < n and MaxPalindromicSubstring(A) returns the length

of the maximum palindrome of the given k-length input string.

Claim: MaxPalindromicSubstring(A) returns the length of the maximum

palindrome of the given n-length input string.

Condition 1: If the �rst and last characters of the given string are equal,
then these two characters should be considered as the �rst and last character
of palidromic substring. So if we could �nd the answer of remaining substring
(length k − 2) correctly we can simply add it by 2. This value is calculated by
MaxPalindromicSubstring(A[2..k − 1]), according to the hypothesis.

Condtion 2: If the �rst and last characters of A are not equal, it's impos-
sible for both of them to play role in palindrome, so the maximum palindrome
either consider A[2..n] or A[1..n − 1] and according to the hypothesis, the al-
gorithm can correctly return these two sub-problems and the maximum of the
answers should be considered as the length of maximum polindromic subse-
quence.

Complexity of Algorithm:

As in non-recursive algorithm, we have to spend O(n2) to initial an compute
P . We also need an O(n2) space array p to memorize the intermediate compu-
tations. Of course in computing each matrix diagonal we need only to memorize
the value of previous diagonal. So, we can reduce the required Space to O(n).

6


