
CS515: Algorithms and Data Structures, Fall 2019

Homework 1∗

Due: Tue, October 15, 2019

Homework Policy:

1. Students should work on homework assignments in groups of preferably three people. Each group submits to
TEACH one set of typeset solutions, and hands in a printed hard copy in class or slides the hard copy under
my door before the midnight of the due day. The hard copy will be graded.

2. The goal of the homework assignments is for you to learn solving algorithmic problems. So, I recommend
spending sufficient time thinking about problems individually before discussing them with your friends.

3. You are allowed to discuss the problems with other groups, and you are allowed to use other resources, but
you must cite them. Also, you must write everything in your own words, copying verbatim is plagiarism.

4. I don’t know policy: you may write ”I don’t know” and nothing else to answer a question and receive 25
percent of the total points for that problem whereas a completely wrong answer will receive zero.

5. Algorithms should be explained in plain english. Of course, you can use pseudocodes if it helps your explana-
tion, but the grader will not try to understand a complicated pseudocode.

6. More items might be added to this list. ©

Problem 1. [25 pts] Consider the following more complex variant of the Tower of Hanoi puzzle
The puzzle has a row of k pegs, numbered from 1 to k. In a single turn, you are allowed to move
the smallest disk on peg i to either peg i − 1 or peg i + 1, for any index i; as usual, you are not
allowed to place a bigger disk on a smaller disk. Your mission is to move a stack of n disks from
peg 1 to peg k.

(a) Describe a recursive algorithm for the case k = 3. Exactly how many moves does your
algorithm make?

(b) Describe a recursive algorithm for the case k = n + 1 that requires at most O(n2) moves.
[Comment: you can try to come up with an algorithm that requires O(n3) moves first.]

Problem 2. [25 pts]

(a) Prove that the following algorithm actually sorts its input!

(b) Would StoogeSort still sort correctly if we replaced m = d2n/3e with m = b2n/3c Justify
your answer.

∗Some of the problems are from the text book. Looking into similar problems from the book, chapters 1 and 2 is
recommended.

1



(c) State a recurrence (including the base case(s)) for the number of comparisons executed by
StoogeSort.

(d) Solve the recurrence, and prove that your solution is correct. [Hint: Ignore the ceiling.]

(e) Prove that the number of swaps executed by StoogeSort is at most
(n
2

)
.

Problem 3. [25pts] The input is a two dimensional n×n array A with the following properties:

• A is composed of distinct integers,

• Each row of A is sorted in ascending order, and

• Each column of A is sorted in ascending order.

Design an algorithm to find the kth smallest element in A. Analyze the running time of your
algorithm as a function of n. For full credit the running time of your algorithm must be a polynomial
of log n, and linear in k.

Problem 4. [25pts] Describe efficient algorithms for the following variant of the text segmen-
tation problem. Assume that you have a subroutine IsWord that takes an array of characters as
input and returns True if and only if that string is a “word”. Analyze your algorithms by bounding
the number of calls to IsWord.

• Given an array A[1 · ·n] of characters, compute the number of partitions of A into words. For
example, given the string ARTISTOIL, your algorithm should return 2, for the partitions
ARTIST ·OIL and ART · IS · TOIL.

2


