Homework Policy:

1. Students should work on homework assignments in groups of preferably three people. Each group submits to TEACH one set of typeset solutions, and hands in a printed hard copy in class or slides the hard copy under my door before the midnight of the due day. The hard copy will be graded.

2. The goal of the homework assignments is for you to learn solving algorithmic problems. So, I recommend spending sufficient time thinking about problems individually before discussing them with your friends.

3. You are allowed to discuss the problems with other groups, and you are allowed to use other resources, but you must cite them. Also, you must write everything in your own words, copying verbatim is plagiarism.

4. I don’t know policy: you may write "I don’t know" and nothing else to answer a question and receive 25 percent of the total points for that problem whereas a completely wrong answer will receive zero.

5. Algorithms should be explained in plain English. Of course, you can use pseudocodes if it helps your explanation, but the grader will not try to understand a complicated pseudocode.

6. More items might be added to this list. 😊

Problem 1. [25 pts] Design and analyze an algorithm that for a given positive integer \(n \) counts the number of different ways to write \(n \) as a sum of 1, 2, 3, and 4. For examples, if \(n = 4 \), the output should be 8, as

\[
\begin{align*}
4 & = 4, \\
4 & = 1 + 3, \\
4 & = 1 + 1 + 2, \\
4 & = 2 + 2, \\
4 & = 1 + 1 + 1 + 1, \\
4 & = 1 + 2 + 1, \\
4 & = 2 + 1 + 1, \\
4 & = 3 + 1.
\end{align*}
\]

Note that 3 + 1 and 1 + 3 are counted as different ways of writing 4.

Some of the problems are from the text book. Looking into similar problems from the book, chapters 3 and 4 is recommended.
Problem 2. [25 pts] Let \(P = (p_1, p_2, \ldots, p_n) \), and \(Q = \{q_1, q_2, \ldots, q_n\} \) be two sequences of points on the plane specifying locations of stones. Imagine two frogs \(\text{Pfrog} \) and \(\text{Qfrog} \) that are connected to each other with a leash would like to hop through these sequences of stones together. In the beginning \(\text{Pfrog} \) is at \(p_1 \), and \(\text{Qfrog} \) is at \(q_1 \). At each step, where the \(\text{Pfrog} \) is at \(p_i \) and \(\text{Qfrog} \) is at \(q_j \), they can proceed in three different ways:

(A) \(\text{Pfrog} \) hops forward to \(p_{i+1} \), and \(\text{Qfrog} \) stays at \(q_j \).

(B) \(\text{Qfrog} \) hops forward to \(q_{j+1} \), and \(\text{Pfrog} \) stays at \(p_i \).

(C) \(\text{Pfrog} \) and \(\text{Qfrog} \) hop forward together to \(p_{i+1} \) and \(q_{j+1} \), respectively.

Design and analyze an algorithm to compute the minimum length of a leash that allows \(\text{Pfrog} \) and \(\text{Qfrog} \) to perform a sequence of hops to reach \(p_n \) and \(q_n \), respectively, while they are connected with the leash. For full credit your algorithms must accomplish the task in polynomial time.

Problem 3. [25 pts] Suppose we need to distribute a message to all the nodes in a rooted tree. Initially, only the root node knows the message. In a single round, any node that knows the message can forward it to at most one of its children. Design and analyze an algorithm to compute the minimum number of rounds required for the message to be delivered to all nodes. For full credit your algorithms must accomplish the task in polynomial time. The following figure shows a message being distributed through a tree in five rounds.

Problem 4. [25 pts] Let \(X \) be a set of \(n \) intervals on the real line. We say that a set \(P \) of points stabs \(X \) if every interval in \(X \) contains at least one point in \(P \). Describe and analyze an efficient algorithm to compute the smallest set of points that stabs \(X \). Assume that your input consists of two arrays \(X_L = [1..n] \) and \(X_R = [1..n] \), representing the left and right endpoints of the intervals in \(X \). Prove that your algorithm is correct.