Problem 1. Let $G = (X \cup Y, E)$ be a regular bipartite graph, and let M be a matching in G. Let $X_M \cup Y_M$ and $X_U \cup Y_U$ be the set of matched and the set of unmatched vertices with respect to M, respectively. For any vertex $v \in X \cup Y$ let $b(v)$ be the expected length of a minimal alternating random walk from v to Y_U as defined in the class and lecture notes.

In class, we proved an upper bound for $b(v)$ by solving a set of equations that relate $b(v)$ for different v’s. As you might have noticed, this method is only valid under the assumption that all $b(v)$’s are finite. In this exercise, we prove that this condition holds.

(a) For any vertex $v \in X \cup Y$, prove that there exists an M-alternating path from v to Y_U if M is not perfect.

(b) What is the probability that a random walk starting at v follows the path of part (a)?

(c) Use (b) to give an upper bound for $b(v)$.

Problem 2. Let $\pi : \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}$ be a permutation. Let S be a set of swaps that transform π into the identity permutation. Recall that the sign of π is $(-1)^{|S|}$. Prove that the sign of a permutation is well-defined. Precisely, let S' be another set of swaps that transforms π into the identity permutation, and show that $|S|$ and $|S'|$ have the same parity.

Problem 3. Let the lattice $\mathbb{Z}^2 = \{(x, y) | x, y \in \mathbb{Z}\}$ be the set of all points in the plane with integer coordinates. A triangle is elementary if its vertices lie on the lattice \mathbb{Z}^2, but it does not intersect any other lattice point (See Figure 1, left.)
Figure 1: Left: Four elementary triangles, right: a polygon with area $6 + 13/2 - 1 = 11.5$ ($N_{int} = 6$, $N_{bdr} = 13$.)

(a) **(Extra credit)** Prove that the area of any elementary triangle is exactly $\frac{1}{2}$.

(b) Let P be a polygon with vertices in \mathbb{Z}^2. Suppose, there are N_{int} and N_{bdr} lattice points in the interior and on the boundary of P, respectively. Use part (a) and Euler’s formula to show that the area of P is:

$$N_{int} + \frac{1}{2}N_{bdr} - 1.$$

For an example, see Figure 1, right.

Problem 4. Define the density of a graph $G = (V, E)$ to be:

$$\rho(G) = \frac{|E|}{|V|} = \frac{m}{n}.$$

(a) Let \mathcal{F} be a minor closed family of graphs, and let ρ_0 be the maximum density of all simple graphs in \mathcal{F}. Show that the Boruvka algorithm can be adapted to work in $O(\rho_0 \cdot n)$ time for graphs in \mathcal{F}.

(b) What is ρ_0 if \mathcal{F} is the family of all planar graphs? Conclude that your adaptation of the Boruvka algorithm works in $O(n)$ for planar graphs.