
CS420/520: Graph Theory with Applications to CS, Winter 2015

Homework 1∗

Due: Tue, Feb/10/15

Homework Policy: Each student should submit his/her own set of solutions, independently.
You are allowed to discuss the homework with other students, however, you need to indicate their
names in your submission. Also, you are allowed to use other sources, but you must cite every
source that you use.

Problem 1. It is known that if no two edges in a graph have equal weights then the graphs has
a unique minimum spanning tree. In fact, a weaker condition on the edge weights implies MST
uniqueness.

(a) Describe an edge-weighted graph that has a unique minimum spanning tree, even though two
edges have equal weights.

(b) Prove that an edge-weighted graph G has a unique minimum spanning tree if the following
condition holds:

• For any partition of the vertices of G into two subsets, the minimum-weight edge with
one endpoint in each subset is unique.

(c) Describe and analyze an algorithm to determine whether or not a graph has a unique minimum
spanning tree.

Problem 2.

(a) Describe and analyze a modification of Bellman-Ford’s shortest-path algorithm that actually
returns a negative cycle if any such cycle is reachable from s, or a shortest-path tree if there
is no such cycle. The modified algorithm should still run in O(mn) time.

(b) Describe and analyze a modification of Bellman-Ford’s shortest-path algorithm that computes
the correct shortest path distances from s to every other vertex of the input graph, even if
the graph contains negative cycles. Specifically, if any walk from s to v contains a negative
cycle, your algorithm should end with dist(v) = −∞; otherwise, dist(v) should contain the
length of the shortest path from s to v. The modified algorithm should still run in O(mn)
time.

∗Problems 1 and 2 are from Jeff Erickson’s lecture notes, and problem 5-(a) is from Uri Zwick’s lecture notes.

1



Problem 3. Let G = (V,E) be a directed graph, and let ` : E → R be a length function. The
length of the edges may be negative, but there is not negative cycle in the graph. Use potential
functions to describe (and analyze) an O(mn+n2 log n) time algorithm that computes the shortest
paths between all pairs of vertices of G. (Hint: the high level idea is mentioned in class).

Problem 4. Let G = (V,E) be a directed acyclic graph (DAG), and let ` : E → R be a length
function. Design and analyze an algorithm to compute the longest path between a given pair of
vertices s, t ∈ V .

Problem 5. Let G = (V,E) be an undirected graph, and let ∆ be the maximum vertex degree
in G. Suppose that ∆ is a constant.

(a) Design and analyze a O(n) time 1
2 -approximation algorithm for the maximum matching prob-

lem in G; an algorithm that finds a matching with cardinality at least 1/2 of the cardinality
of the maximum matching.

(b) (Extra credit) Now, let α be a positive integer constant. Design (and analyze) a O(n)
time α

α+1 -approximation algorithm for the maximum matching problem in G. Describe the
running time of your algorithm as a function of α, ∆ and n.

2


