CS420/520: Graph Theory with Applications to CS, Winter 2017

Homework 4

Due: Tue, Feb/14/17

Homework Policy:

- 1. Students should work on homework assignments in groups of preferably three people. Each group submits to TEACH one set of typeset solutions, and hands in a printed hard copy in class or slides the hard copy under my door before the midnight of the due day. The hard copy will be graded.
- 2. The goal of the homework assignments is for you to learn solving algorithmic problems. So, I recommend spending sufficient time thinking about problems individually before discussing them with your friends.
- 3. You are allowed to discuss the problems with other groups, and you are allowed to use other resources, but you *must* cite them. Also, you must write everything in your own words, copying verbatim is plagiarism.
- 4. *I don't know policy:* you may write "I don't know" *and nothing else* to answer a question and receive 25 percent of the total points for that problem whereas a completely wrong answer will receive zero.
- 5. Algorithms should be explained in plain english. Of course, you can use pseudocodes if it helps your explanation, but the grader will not try to understand a complicated pseudocode.

Readings:

(A) Jeff lecture notes on all pairs shortest paths: http://jeffe.cs.illinois.edu/teaching/algorithms/notes/22-apsp. pdf.

Problem 1. Let G = (V, E) be a directed graph with weighted edges; edge weights could be positive, negative, or zero.

- (a) How could we delete an arbitrary vertex v from this graph, without changing the shortest-path distance between any other pair of vertices? Describe an algorithm that constructs a directed graph G' = (V', E') with weighted edges, where $V' = V \setminus \{v\}$, and the shortest-path distance between any two nodes in G' is equal to the shortest-path distance between the same two nodes in G, in $O(V^2)$ time.
- (b) Now suppose we have already computed all shortest-path distances in G'. Describe an algorithm to compute the shortest-path distances from v to every other vertex, and from every other vertex to v, in the original graph G, in $O(V^2)$ time.
- (c) Combine parts (a) and (b) into another all-pairs shortest path algorithm that runs in $O(V^3)$ time. (The resulting algorithm is not the same as Floyd-Warshall!)