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Abstract

We describe a (1+ε) approximation algorithm for finding the minimum distortion embedding
of an n-point metric space, (X, dX), into a tree with vertex set X. The running time of our

algorithm is n2 · (∆/ε)(O(δopt/ε))
2λ+1

parameterized with respect to the spread of X, denoted by
∆, the minimum possible distortion for embedding X into any tree, denoted by δopt, and the
doubling dimension of X, denoted by λ. Hence we obtain a PTAS, provided δopt is a constant
and X is a finite doubling metric space with polynomially bounded spread, for example, a point
set with polynomially bounded spread in constant dimensional Euclidean space. Our algorithm
implies a constant factor approximation with the same running time when Steiner vertices are
allowed.

Moreover, we describe a similar (1 + ε) approximation algorithm for finding a tree spanner
of (X, dX) that minimizes the maximum stretch. The running time of our algorithm stays the
same, except that δopt must be interpreted as the minimum stretch of any spanning tree of
X. Finally, we generalize our tree spanner algorithm to a (1 + ε) approximation algorithm for
computing a minimum stretch tree spanner of a weighted graph with a given upper bound deg on
the maximum degree, where the running time is parameterized with respect to deg, in addition
to the other parameters above. In particular, we obtain a PTAS for computing minimum
stretch tree spanners of weighted graphs, with polynomially bounded spread, constant doubling
dimension, and constant maximum degree, when a tree spanner with constant stretch exists.
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1 Introduction

Given a general metric space (X, dX), consider the problem of finding a host metric space from
within some class of “simple” metric spaces that (X, dX) can be embedded into while preserving
pairwise distances as much as possible. This is a central problem in the algorithmic study of metric
spaces, as naturally finding such a simpler metric can unlock a set of efficient algorithmic tools
which may be less effective on more complex spaces.

To quantify the extent to which an embedding preserves distances, we consider the (multiplica-
tive) distortion, which is a widely used and studied measure, having many nice properties such as
scale invariance. Formally, given metric spaces (X, dX) and (Y, dY ), an embedding of X into Y is
an injective map f : X → Y , with expansion ef and contraction cf defined as

ef = max
x,x′∈X
x 6=x′

dY (f(x), f(x′))

dX(x, x′)
, cf = max

x,x′∈X
x 6=x′

dX(x, x′)

dY (f(x), f(x′))
.

The distortion of f is then defined as δf = ef ·cf . Low distortion embeddings have been extensively
studied and have been used in a variety of computer science applications (see [IM04,Ind01,Mat13]).

Among alternatives, one of the most widely studied classes of simpler host metric spaces is the
class of weighted trees, whose structure is well understood and readily allows one to apply tools
such as dynamic programming. Furthermore, such embeddings have found natural applications,
for example, in estimating phylogenetic trees [KW99]. Closely related to minimum distortion
embeddings into trees is the problem of finding tree spanners with minimum stretch. Given a graph
G, a tree spanner with stretch δ is a spanning tree of G preserving distances up to a multiplicative
factor of δ, i.e. a δ distortion embedding into a spanning tree of G. As minimal distance preserving
structures, tree spanners have for example found applications in distributed systems [DH98,PR01].

In this paper, we provide parameterized approximation algorithms for minimum distortion
embeddings into trees, and minimum stretch tree spanners. In other words, we seek to answer the
fundamental question, how well can a given metric space (or graph) be represented by a tree?

Significance. Finding an approximate minimum distortion embedding into a tree is a provably
hard problem, thus many previous works have focused on the simpler case when the input is the
shortest path metric of an unweighted graph (as discussed in detail below). Here we consider the
far more general weighted case, i.e. the input is any finite metric. In order to make such a large
jump we must parametrize our running times on certain quantitative measures of the source metric,
in particular, the doubling dimension and spread.1 It is important to note that our running time
depends only polynomially on the spread, and thus is designed to handle reasonably large ranges of
distances. (Note for unweighted graphs the spread is trivially polynomially bounded.) Our running
time is also parametrized on the optimal distortion, δopt. This is natural because when δopt is large
not only is the problem hard to approximate, but also a minimum distortion embedding becomes less
informative. Note that more generally removing any of these parameterizations quickly either leads
to an open problem or a known hard case. Moreover, whenever these parameters are bounded we
get a PTAS for finding the minimum distortion embedding into a tree (or a PTAS for the minimum
stretch tree spanner). Thus as a natural example, given a point set in low dimensional Euclidean
space, with up to polynomially large spread, we can get a (1+ε)δopt embedding in polynomial time
if δopt is below some constant threshold, and otherwise report that the input metric cannot be well
represented by a tree.

1The spread is the ratio of the largest to smallest distance in the metric, sometimes referred to as the aspect ratio.
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1.1 Previous Work

Embedding into trees. Nearly a half century ago, Buneman studied the problem of reconstruct-
ing trees from distance measures [Bun71]. He showed that an embedding with distortion one can
be found in O(n4) time if it exists. Later, Agarwala et al. [ABF+99] showed that in the absence of a
perfect embedding, finding a minimum distortion embedding is not only NP-complete, but actually
APX-hard.2 Moreover, in certain cases much stronger hardness results are known. For example,
finding the minimum distortion embedding into the real line, that is a tree of maximum degree two,
is hard to approximate within a polynomial factor even when embedding from weighted tree metrics
with polynomial spread [BCIS05] (note the problem is much easier for additive distortion, as there is
a 2-approximation [HIL98]). Thus it is natural to consider restrictions on the source metric space.
In particular, Bădoiu et al. [BIS07] showed the minimum distortion embedding for unweighted
graphs into trees can be approximated within a constant factor in polynomial time. Their result
leads to the state of the art 6-approximation after a couple of improvements [BDH+08,CDN+10].
In contrast to unweighted graphs, far less is known about embedding general metrics into trees.
In fact, the only non-trivial approximation algorithm, found by Bădoiu et al. [BIS07], gives an
embedding with distortion (δopt log n)

√
log ∆, where δopt is the minimum distortion.3

Tree spanners. The history of tree spanner algorithms is somewhat similar. Cai and Corneil
initiated the study of tree spanners [CC95], and showed that the 1-spanner of a weighted graph,
if it exists, coincides with the minimum spanning tree, and therefore can be computed efficiently.
Nevertheless, computing t-spanners is NP-complete for t > 1. For unweighted graphs, in the same
paper it was shown that the situation is slightly better: there are polynomial time algorithms to
find 1-spanners or 2-spanners, if they exist, while finding t-spanners is NP-complete for t > 4.
For unweighted graphs, Emek and Peleg [EP08] and Dragan and Köhler [DK14] show O(log n)-
approximation algorithms for finding minimum stretch tree spanners. More recently, Fomin et
al. [FGvL11] showed that for constants t and w, t-spanners of treewidth w for bounded degree
graphs can be found in polynomial time if they exist [FGvL11] (also see [Pap15]). To the best of
the authors’ knowledge no approximation algorithm is known for general metric spaces for t > 1.

Geometric tree spanners are an interesting special case, where the input is a weighted graph
representing the distances between points from a metric space. Not much is known even for this
special case. (Note the significance of requiring that the spanner is a tree, as there are many results
when other sparse graphs are allowed.) Eppstein [Epp00] asked whether one can compute the min-
imum stretch geometric tree spanner or the minimum stretch hamiltonian path for a planar point
set, either exactly or approximately, in polynomial time. Cheon et al. [CHL07] partially answers
this question by showing NP-hardness for the decision problem. Eppstein and Wortman [EW05]
give a nearly linear time algorithm to find the minimum stretch star for a planar point set. As for
approximation algorithms, prior to our work, no non-trivial approximation was known even for the
case when the input is a planar point set. Our results imply a PTAS for computing the minimum
stretch spanning tree and the minimum stretch hamiltonian path of a planar point set provided
polynomially bounded spread and constant stretch. (Here we seek tree spanners minimizing the
maximum multiplicative stretch, although different variants have been studied before. We refer the
reader to [LW08] for a list of different tree spanner problems and a survey of corresponding results.)

2Note [ABF+99] states the additive distortion case is APX-hard, however, Chepoi et al. [CDN+10] noted that the
proof also implies the same for the multiplicative distortion for a smaller constant.

3There is a different line of research for embedding a graph into a given tree (or graph), see for example [KRS04,
FFL+13, NR17]. We emphasize that the goal of this paper is different as here we look for the best possible tree to
embed into. Also, note we focus on multiplicative distortion. See [HIL98,ABF+99] for results on additive distortion.
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1.2 Our results

In this paper, we consider the problems of embedding a general metric space into a tree, and
finding the minimum stretch tree spanner of a metric space. We give approximation algorithms
whose running times are parameterized with respect to: δopt, the minimum distortion (or stretch);
∆, the spread of X; and λ, the doubling dimension of X. Our main result is an algorithm to embed
a general metric space (X, dX) into a tree with vertex set X.4

Theorem 1.1. Let X be an n-point metric space, with doubling dimension λ and spread ∆. Also,
let δopt be the minimum distortion of any embedding of X into any tree with vertex set X. For any

0 < ε < 1, there is an n2 · (∆/ε)(O(δopt/ε))2λ+1
time algorithm to compute a (1 + ε)δopt distortion

embedding of X into a tree with vertex set X.

To obtain the above result we first show how to compute a (1+ε)-approximation to the minimum
distortion embedding into a tree on vertex set X with bounded degree (which may be of independent
interest). Then it is argued our bounded doubling dimension assumption implies that a tree with
arbitrary degree can be embedded into a tree with bounded degree with distortion at most 1 + ε.

The result of Gupta [Gup01], which shows that Steiner vertices can help only up to a factor of
eight in the distortion (see Lemma 2.3), implies that the output of the algorithm of Theorem 1.1 is
also a constant factor approximation for embedding into a tree when Steiner vertices are allowed.

Corollary 1.2. Let X be an n-point metric space, with doubling dimension λ and spread ∆. Let
δopt be the minimum distortion of any embedding of X into any tree. For any 0 < ε < 1, in

n2 · (∆/ε)(O(δopt/ε))2λ+1
time one can compute an (8 + ε)δopt distortion embedding of X into a tree.

Our approach can be adapted to compute tree spanners of finite metric spaces. Here, the input
is a finite metric space, and the tree spanner must be chosen from the set of all spanning trees of
the complete graph representing the metric space. Note this theorem is different from Theorem 1.1
as the weight of an edge (x, x′) in the tree spanner, for any x, x′ ∈ X, must be equal to dX(x, x′).

Theorem 1.3. Let X be a metric space with doubling dimension λ and spread ∆. Let δopt be
the minimum possible stretch of any spanning tree of X. For any 0 < ε < 1, there is an n2 ·
(∆/ε)(O(δopt/ε))2λ+1

time algorithm to compute a (1 + ε)δopt-tree-spanner.

Note the above theorem only considers spanning trees from metric complete graphs. We can
strengthen this result to an algorithm for computing tree spanners for general weighted graphs,
however, the running time depends on the maximum allowable degree for the tree spanner.

Theorem 1.4. Let G = (X,E,w) be a weighted graph, and let (X, dX) be its shortest path metric
space. Let λ and ∆ denote the doubling dimension and spread of (X, dX), respectively, and let
deg > 0 be some integer. Let δopt be the minimum possible stretch of any spanning tree of G of

maximum degree at most deg. For any 0 < ε < 1, there is an n2 · (∆/ε)log(deg)(O(δopt/ε))2λ+1
time

algorithm to compute a (1 + ε)δopt-tree-spanner with maximum degree at most deg.

Note that Theorem 1.1 gives a PTAS for the minimum distortion embedding of a finite metric
space (X, dX) into a tree on vertex set X, provided that δopt and λ are constants, and that ∆
is polynomially bounded. Under the same set of conditions, Corollary 1.2 gives a constant factor
approximation algorithm for embedding X into any tree. Again, under the same conditions, Theo-
rem 1.3 gives a PTAS for computing the minimum stretch geometric tree spanner, and Theorem 1.4
gives a PTAS for computing the minimum stretch bounded degree tree spanner of a weighted graph.

4 For all our results we actually prove a stronger running time bound. Namely the (O(δopt/ε))
2λ+1 term in the

exponent can instead be written as log(1/ε)(1/ε)(O(δ2opt/ε))
λ. In the theorem statements, however, we prefer a less

cluttered form, as it allows one to more clearly see the rough dependence on each parameter.
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Outline. After covering basic background in Section 2, we give an overview of our approach
in Section 3. In Section 4 we present our main result for approximating minimum distortion
embeddings of metric spaces into bounded degree trees. We then show how to remove the bounded
degree assumption in Section 5, by proving that with (1 + ε) distortion, any tree can be embedded
into a tree whose degree is bounded by a function only depending on ε and the doubling dimension.
Finally, in Section 6, we show that our algorithm can be adapted to find tree spanners by formulating
the problem in a more general setting.

2 Preliminaries

Graphs and metrics. We use G = (V,E,w) to denote an undirected graph with vertex set V ,
edge set E, and positive edge weight function w : E → R+. The shortest path metric (V, dG) of
a graph G is defined by the distance function dG : V × V → R≥0, where dG(u, v) is the length of
the shortest u-to-v path in G. For each u ∈ V , we define adjG(u) to be a list of all incident edges
to u in G.

Throughout the paper we use ∆ to denote the spread of the given finite metric space (X, dX),
that is ∆ = (maxx 6=y∈X dX(x, y))/(minx 6=y∈X dX(x, y)). Given a metric space (X, dX), a point
x ∈ X, and a radius r ∈ R+ ∪ {0}, the ball B(x, r) is the subset of all points of X whose distance
to x is at most r. The doubling dimension of a metric space (X, dX) is the smallest λ ∈ R+

such that for any r ∈ R+, each ball of radius r can be covered by at most 2λ balls of radius r/2.
A metric space is called doubling if λ is bounded by a constant (independent of the size of the
problem). The following lemma of Gupta et al. [GKL03] is helpful in the analysis in this paper.

Lemma 2.1 ([GKL03], Proposition 1.1). Let (X, dX) be a metric with doubling dimension λ, and
let X ′ ⊆ X. If all pairwise distances in X ′ are at least `, then any ball of radius R in X contains

at most
(

2R
`

)λ
points of X ′.5

Embeddings and distortion. An embedding of a metric space (X, dX) to a metric space (Y, dY )
is an injective map f : X → Y . The contraction cf and the expansion ef of f are defined as

cf = max
x,y∈X,x 6=y

dX(x, y)

dY (f(x), f(y))
, and ef = max

x,y∈X,x6=y

dY (f(x), f(y))

dX(x, y)
.

An embedding is called non-contracting if its contraction is at most one. The distortion of
f is defined as δ = cf · ef . Often in this paper we consider the identity map as an embedding
from a metric space (X, dX) to the shortest path metric (X, dT ) of a tree T = (X,ET , wT ). To
simplify notation, in these cases, we drop f and compare x-to-y distance in X, denoted by dX(x, y),
with the x-to-y distance in T , denoted by dT (x, y). Also to simplify, we refer to the identity map
(X, dX) to (X, dT ) as the embedding defined by T . We use δopt(X) to refer to the smallest
possible distortion for embedding X into any tree. When it is clear from the context we use the
same notation, δopt(X), to refer to the smallest possible distortion for embedding X into any tree
with vertex set X. We use δopt(X, deg) to refer to the smallest possible distortion for embedding X
into any tree of maximum degree at most deg. Since distortion is scale invariant a non-contracting
embedding of expansion δopt(X) always exists, and throughout the text we assume we are looking
for a such an embedding.

We found the following lemma helpful when working with embeddings between shortest path
metrics of graphs.

5Note that λ in their paper is the doubling constant, whereas in this paper it denotes the doubling dimension.
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Lemma 2.2 ([KRS04], Proposition 2.3). Let G = (VG, EG) and H = (VH , EH) be two positively
weighted undirected graphs, and let dG and dH be their shortest path metrics, respectively. Let
f : VG → VH be a bijection. Then the expansion of f is achieved by an adjacent pair u, v ∈ VG,
and the contraction of f (or the expansion of f−1) is achieved by an adjacent pair x, y ∈ VH .

In this paper, we consider embedding into trees both when Steiner vertices are allowed and
when they are not allowed. The following Lemma of Gupta, ensures that the optimal tree metrics
for these two problems differ up to a factor of at most eight.

Lemma 2.3 ([Gup01], Theorem 1.1). Given a tree T ′ = (V ′, E′, w′) with shortest path metric dT ′,
and a set of required vertices V ⊆ V ′ , there exists a tree T = (V,E,w) with shortest path metric

dT such that for all x, y ∈ V , 1 ≤ dT (x,y)
dT ′ (x,y) ≤ 8. Moreover, T can be computed in polynomial time.

Tree spanners. Let G = (V,EG, wG) be a graph, and let T = (V,ET , wT ) be a spanning tree of
G, where wT is the restriction of wG to ET . Let e = (u, v) ∈ EG. The stretch (or dilation) of the
edge e is defined as strT (e) = dT (u, v)/dG(u, v). Note that dT (u, v) ≥ dG(u, v). The stretch (or
dilation) of T is then defined as the maximum stretch of the edges in EG, strT = maxe∈EG strT (e).
By Lemma 2.2, the identity map is a map of distortion strT from (V, dG) to (V, dT ). If strT = t,
we say that T is a t-tree spanner of G. Hence, finding the minimum stretch spanning tree is
equivalent to finding the spanning tree into which the identity map has the lowest distortion.

Let (X, dX) be a metric space, and let T = (X,ET , wT ), where wT is the restriction of dX
to ET . Let x, y ∈ X × X. The geometric stretch (or dilation) of the pair (x, y) is defined as
strT (x, y) = dT (x, y)/dX(x, y). Again, note dT (x, y) ≥ dX(x, y). The geometric stretch of T is
then defined as strT = maxx,y∈X & x 6=y strT (x, y). If strT = t, we say that T is a geometric t-tree
spanner of X. (Alternatively, let GX = (X,EX , dX) be the complete graph over X, where for
each x, x′ ∈ X, the weight of edge (x, x′) is dX(x, x′). Then, for any tree T with vertex set X, the
geometric stretch of T with respect to X is equal to the stretch of T as a spanning tree of GX .)
When it is clear from the context, we sometimes drop the adjective “geometric”.

3 Overview

Here we sketch our algorithm and its analysis for embedding an n-point metric space (X, dX) into
a tree with vertex set X, which by Lemma 2.3 will also serve as a sketch for the case when Steiner
vertices are allowed. Our algorithms for the tree spanner cases follow a similar high level approach
as sketched here, but require enforcing a set of additional constraints (on edge weights). The details
of these constraints and their enforcement can be found in Section 6.

Throughout, for any x ∈ X the term point is used when referring to x in the metric space
(X, dX), and the term vertex when referring to x in the tree. Here we assume we are given a
value δ such that δ ≥ δopt, where δopt is the minimum distortion of any embedding of (X, dX) into
a tree (with vertex set X). Ultimately our actual algorithm performs an exponential search to
approximately find δopt, where the procedure sketched below can be seen to fail and hence return
“false” if δ < δopt. Moreover, assume the spread of (X, dX), denoted by ∆, is polynomially bounded,
that δ is a constant, and X is doubling. Under these conditions, we describe a polynomial time
algorithm to compute an embedding of X into a tree with O(δ) distortion. Our actual algorithm
achieves (1 + ε)δ distortion, though for simplicity here we are satisfied with this weaker guarantee.

As distortion is scale invariant, as remarked in the previous section, we can restrict our attention
to non-contracting embeddings where the expansion is at most δ. Moreover, scale invariance also
implies that we can assume the smallest distance in (X, dX) is 1, and hence the largest distance
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is ∆. As the expansion is at most δ, this implies we can restrict our attention to trees with edge
weights in the interval [1, δ∆]. Finally, to make things simpler we assume all edge weights are
integers (which is valid since we are only seeking a constant factor approximation).

We start by describing a more comprehendible version of the algorithm containing many of the
key ideas, though with an exponential running time. Then we modify the algorithm step by step
to obtain a polynomial running time.

Stitching local views. For each point x ∈ X, our algorithm tries to enumerate all possible local
“views” of what a distortion at most δ embedding could look like when standing at the vertex x
(i.e. the image of point x). Then, our algorithm tries to stitch together these views (each containing
only partial information of the tree) into a tree T on X with O(δ) distortion.

As a first attempt, we define a local view at a vertex x to contain precise information about the
location of all other vertices relative to the vertex x. Specifically, a view Vx at a vertex x includes
the following information (from the tree of an at most δ distortion embedding):

(1) The degree of x.
(2) For each y ∈ X: (a) the branch of x leading to y, and (b) the distance of x to y.

Figure 1-left shows a possible view at a vertex x and a possible view at vertex y on a tree with
vertex set {a, b, . . . , h, i, x, y}. Note any embedding of X into a tree T implies a view Vx at each
vertex x. In this case, we also say Vx extends to T . Note that a view can extend to more than one
tree, as the distance/branch information at one vertex is not sufficient to uniquely reconstruct a
tree. Figure 1-right shows a tree that is an extension of both of the views (at x and y) on the left.

Figure 1: Left: views at x and y, right: a tree that is an extension of both views. To keep the
figure readable, unweighted distance are used, though in general weights are allowed.

We now formalize the notion of stitching. For a given view Vx at a vertex x, for every z ∈ X
define (i) bx(z) to be the branch of x that leads to z according to Vx, and (ii) dx(z) to be the
x, z-distance according to Vx. For a given view Vy at another vertex y, similarly define by(z) and
dy(z). Let b = bx(y) denote the branch label of y in Vx, and let b′ = by(x) denote the branch label
of x in Vy. Intuitively, we say that Vx and Vy are stitchable if when we identify the labels b and b′,
all pieces of information in Vx and Vy look consistent. Specifically,

(1) dx(y) = dy(x). Call this value ` (i.e. the length of the edge (x, y)).

(2) For any z ∈ X,

(a) bx(z) = b if and only if by(z) 6= b′, and

(b) if bx(z) = b then dx(z) = dy(z) + `, otherwise dx(z) = dy(z)− `.

For example, the views in Figure 1 are stitchable, and the stitched result is shown in Figure 2-left.
The stitching operation tells us how to build one edge of our desired tree. Next, by stitching

another view to this “edge” one obtains a larger subtree (see Figure 2-right). By continually
stitching together more and more views, our ultimate goal is to obtain a full tree T on vertex set
X. So suppose we successfully stitched together views into such a tree. What can be said about
the resulting tree this stitching produces? First, it is not hard to see that requiring consistency of
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Figure 2: Left: stitching together a view at x and a view at y (to build the edge (x, y)), right:
stitching a view at e to the view at x (to build the subtree of x, y, and e).

the branch information implies the resulting tree defines a valid embedding (i.e. a point cannot be
mapped to two different vertices). Second, observe that a view centered at some vertex x records the
distance from x to the image of any other z ∈ X under this embedding, and so requiring consistency
of distances can be shown to imply that the view at z must also record the same distance to x.
This implies that if for each x ∈ X, if locally at the view of x no distance from x was expanded
by more than δ, then globally the resulting tree defines an embedding with expansion at most δ,
and hence distortion at most δ by our non-contracting assumption. Thus we restrict our attention
to plausible views, where a view at a vertex x is plausible if for all z ∈ X, the x-z distance in the
view has a value between dX(x, z) and δdX(x, z).

There are many potential views at a vertex x which are plausible. Though as described below,
by a number of careful summarization steps we can make the view descriptions compact enough
such that we can enumerate all possible plausible views. However, deciding which views to stitch
together from these lists is still a daunting task. Fortunately, dynamic programming can be used
to give an algorithm whose running time is polynomial in the number of views. Interestingly,
while this dynamic programming ultimately works because our goal is to stitch together a tree (a
structure amenable to dynamic programming), the dynamic programming we now describe is not
actually done over a tree.

Assembling the tree. Provided the set of all plausible views at every vertex, we now describe
a dynamic program which builds a tree T on vertex set X by stitching together appropriate views.
To facilitate our dynamic program, we fix an arbitrary point r ∈ X, and root all trees with vertex
set X at r. Fixing r allows us to uniquely define the set of descendants for each view Vx (at a vertex
x). Namely, y ∈ X is a descendant of x in Vx if the branch of x leading to y (according to Vx) is
different from the branch of x leading to r (according to Vx). In other words, y is a descendant in
Vx if for all extensions of Vx to a tree T with root r, y is a descendant of x in T . We denote the
set of descendants of x according to Vx by des(x, Vx). We emphasize it is possible a vertex y is a
descendant of x according to a view Vx and not a descendant of x according to another view V ′x.

Now we are ready to define our subproblems. For any plausible view Vx at any x ∈ X, we say
Subtree(x, Vx) is true if and only if there is a set of views V, one per vertex of des(x, Vx), such that

• V ∪ {Vx} can be stitched together to build a tree with vertex set des(x, Vx)∪ {x} and root x.

The definition of Subtree(·, ·) implies the following recursive algorithm to check if Subtree(x, Vx)
is true. Let b0, b1, b2, . . . , bt be all the branches of x according to Vx, and let b0 be the branch that
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leads to r. Subtree(x, Vx) is true if and only if there are y1, . . . , yt ∈ X and views Vy1 , . . . , Vyt such
that for every i ∈ {1, . . . , t} we have:

(1) bi is the branch of x that leads to yi (according to Vx),

(2) Vx can be stitched to Vyi , and

(3) Subtree(yi, Vyi) is true.

Using this recursive relation we can build our dynamic programming table to check if there exists
a plausible view Vr at the root r such that Subtree(r, Vr) is true. If so, by tracing back through
the dynamic programming table, we can stitch together a set of plausible views to build a tree T
with distortion at most δ. (Note it is now easy to see that if we had allowed δ < δopt, in this case
the dynamic program would fail, and hence we would know to return “false”.)

Observe that the running time of our dynamic program is clearly polynomial in terms of n = |X|
and the maximum number of plausible views at any vertex. Unfortunately however, with the current
definition of a view, the total number of plausible views at a vertex can be exponentially large. A
trivial bound on the number of such views at a vertex x ∈ X is,

n · (n)n · (δ∆)n,

as there are at most n choices for the degree of x, and for any other y in X \ {x} there are at
most n choices for its branch, and δ∆ choices for its distance. Recall the δ∆ bound on the number
of distances follows since the maximum distance in (X, dX) was ∆, and we are looking for an
embedding of distortion at most δ (and we assumed integral distances).

In Section 4 we prove that a doubling tree metric embeds into a bounded degree tree metric
with constant distortion. Therefore, if our goal is to achieve a constant factor approximation, then
we can assume that the degree of our target tree is bounded by a constant. This reduces our bound
on the number of plausible views at any vertex to

O(1) · (O(1))n · (δ∆)n = (O(∆))n,

as we assumed δ is a constant. At this point the number of views, and therefore the running time of
our dynamic program, is still exponential in n. Note however that up until the point we assumed the
tree degree was constant, our algorithm had actually been exact. Thus we can now take advantage
of the extra slack of moving to an approximation, to drastically improve the running time.

Hierarchical nets. To reduce the above running time we have no choice but to make the views
more concise. To that end, for each point x ∈ X, we choose a subset Ix ⊆ X, and include
branch/distance information only for the points of Ix (instead of all of X) in any view at x. We
say a vertex y is visible from x if y ∈ Ix. We now argue that if one selects the visible vertices for
each view carefully, then only a logarithmic number is sufficient to guarantee that the resulting
assembled tree of plausible views has O(δ) distortion.6

Now lets figure out how to construct Ix. This subset of X will still somehow need to approx-
imately capture the distance information from all y /∈ Ix to x. Suppose that for any y /∈ Ix, we
guarantee that there is some z ∈ Ix such that dX(y, z) ≤ dX(x, y)/c for some constant c > 1. Then
in this case up to a constant factor dX(x, z) ≈ dX(x, y), and so potentially the information recorded
for z can be used as a proxy for that of y. (For example, if dX(y, z) ≤ dX(x, y)/2, then by applying
the triangle inequality (twice) we have dX(x, z) ∈ [(1/2)dX(x, y), (3/2)dX(x, y)].) Ultimately, how-
ever, we need to approximate the distance from y to x in the tree, not in the input metric space.

6 For our dynamic program to work, it is crucial these views determine the branch information for all vertices.
However, we now focus only on preserving distances, as we can prove this implies we can determine branches exactly.
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Assuming that the x-z and y-z distances are not contracted and expand by at most δ when going
from (X, dX) to the tree, then by simply changing our requirement to dX(y, z) ≤ dX(x, y)/(cδ), we
assure only a constant factor distance error in the tree. So how do we ensure that the x-z and y-z
distances are not contracted and expand by at most δ? Well, since z is visible to x, the plausibility
of our current view at x ensures this for the x-z distance. For the y-z distance we then should
ensure z is also visible from the view at y. In short, for any y /∈ Ix, we need to guarantee there is
a z ∈ Ix that is (i) sufficiently close to y, and (ii) is visible from y. We now define Ix sets which
achieve this goal while being concise.

Figure 3: Left: hierarchical nets around x (net points are red, x is blue), right: z is used to estimate
the distance to y in x’s view.

To construct the Ix we use r-nets, a standard geometric tool, where an r-net is any subset of X
such that (i) pairs of net points are at least r apart and (ii) every point in X has distance at most
r to its nearest net point. The above discussion then implies that Ix should be constructed such
that for any y ∈ X it contains y’s nearest net point from an r-net of X where (up to a constant)
r = dX(x, y)/δ. Now we want Ix to be small, so we cannot afford to build a custom radius net
for every possible distance to x. Thus instead we bin distance by factors of δ. Specifically, we
construct a set of nested nets: X = X≥0 ⊇ X≥1 ⊇ . . . ⊇ X≥logδ ∆, where X≥s is a δs-net. (Note
δlogδ ∆ = ∆ is the largest radius we need to consider as ∆ is the largest distance in (X, dX). Also,
such a nested set of nets can be easily computed with the standard greedy k-center algorithm.) So
consider any y ∈ X, where dX(y, x) lies somewhere in the interval [δs+1, δs+2], for some integer s.
Then Ix should be constructed so that it includes y’s nearest net point in X≥s (as dX(y, x) may
be as small as δs+1). All points whose distance to x lie in this range are contained in the ball
B(x, δs+2), and hence their nearest X≥s net points are contained in B(x, 2δs+2). Thus in general
Ix is constructed by including all net points from X≥s contained in B(x, 2δs+2), for all values of
s. Intuitively, Ix is thus a net of points whose density exponentially decreases with respect to the
distance from x (see Figure 3).

Construct the Ix sets as described above for all x ∈ X. Now fix some Ix, and for any y /∈ Ix,
consider its nearest neighbor in all different scale nets. Specifically, let zs be the nearest neighbor of
y in X≥s. By construction all these nearest neighbors are visible from y (i.e. are in Iy). Let t be the
smallest index such that zt is also visible from x. (Note t is well defined as the points in X≥logδ ∆

are visible to everyone.) It can be shown that for this choice of zt (in particular, because zt−1 is
not visible from x), that zt is sufficiently close to y (relative to the distance to x), and thus zt is
the point we sought above (visible to both x and y and) which guarantees our desired properties.

The only question that remains, is how big is Ix? Since X is doubling and δ is a constant,
there are O(1) points from X≥s inside each ball B(x, 2δs+2). (This follows from Lemma 2.1 and
the packing property of nets, i.e. property (i) above.) Therefore, the total size of Ix is bounded by
O(logδ ∆), the number of concentric balls. (Note that logδ ∆ = O(log ∆) if δ > 2, which we can
assume as a constant factor approximation suffices for the overview.) With these conciser views,
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the number of plausible views per vertex goes down to

(O(∆))O(log ∆) = ∆O(log ∆),

which readily implies an algorithm whose running is polynomial in n and quasi-polynomial in ∆.

Anchors and mile markers. We managed to reduce the number of visible vertices in each view
to O(log ∆), thus obtaining an algorithm with quasi-polynomial dependence on the spread. Getting
a polynomial dependence on the spread by reducing the number of visible vertices in each view to a
constant seems impossible. Thus alternatively, we now seek to improve this dependence by storing
less information about the distances to each visible vertex.

At first blush, the solution may seem obvious. Just record distances approximately rather than
exactly, since our solution is already approximate because instead of mapping each point we only
mapped its closest net point at an appropriate scale. Specifically, if a view Vx is mapping a scale
s net point y, then record the distance from x to y in the image up to a factor of roughly δs.
This approach however has a fatal flaw, as deciding whether views can stitch together becomes
ambiguous, especially over relatively short edges. Suppose the view at x claims the distance to y
in the tree is in between 10δs and 11δs. As we walk from x to y in the tree, at some point our
estimate of the distance to y in the current view will have to be decreased (otherwise we never reach
y). The issue is that in our dynamic program as we stitch views, since we don’t actually know the
tree structure, there is no way to know when this update should happen. Specifically, our dynamic
program must try both long and short edges on this path. If it tries an edge that is longer than δs,
well then it knows the estimate must be decreased at the next view. However, if the next edge is
much smaller than δs then knowing whether to update or not means knowing where in the range
[10δs, 11δs] the distance to y lies, i.e. we are back to needing to know the distance exactly. In other
words, if we walk down a long path with short edges, the views across each edge look consistent,
but by the time we reach y something will have gone wrong.

a

Figure 4: Anchor (yellow square), beacon rings (blue circles), and x-to-y mile marks (red triangles).

To resolve this issue, rather than recording the exact distance to the image of each net point,
instead we fix an arbitrary vertex a ∈ X, called the anchor, and for any given view Vx centered
at a vertex x we only record the distance from x to a exactly. Note that to check if two views
across a given edge in the tree are consistent with respect to the anchor, we just verify that their
claimed distances from the view centers to the anchor differ by exactly the length of the edge.
(Note whether the distance should go up or down, depends on whether we are walking towards or
away from the anchor, and hence we also record the branch of the anchor.)

Now consider a tree T , and for a given integer s ≤ logδ ∆, imagine placing a set of concentric
rings around the anchor a, with radii iδs for all integers i ≥ 0 (see Figure 4). Call these beacon rings
of scale s and consider the locations where these rings cross T . For any vertices x, y we define their
scale s approximate distance to be the number scale s beacon rings on the unique x, y-path in T . As
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a simple analogy, when driving from point A to point B on the highway, if one records the number
of mile markers that get passed, then one will know the distance from A to B, at the resolution of
a mile. Of course, our algorithm does not know T a priori, but when stitching together two views
Vx and Vy, the number of rings that cross the resulting edge (x, y) can be computed from the exact
distance of x and y to the anchor (without knowing T ). Thus, we can achieve an approximate
version of our stitching definition.

In a view Vx at x, we therefore register the exact distance to the anchor point, and for each
visible scale s net point we register its distance from x with only δs accuracy (by recording the
number of beacon ring of scale s crossings on its path from x). Since any visible scale s net point has
distance O(δs+2) from x, as δ is a constant, there are O(1) choices for its distance estimate from x.
As there are O(log ∆) visible points from x, there are (O(1))O(log ∆) choices for the branch/distance
information of all visible points from x. Moreover, there are O(∆) choices for the branch/distance
of the anchor point, and O(1) choices for the degree of x. Overall, the number of plausible views
at vertex s is bounded by,

(O(1))O(log ∆) ·O(∆) ·O(1) = O(poly(∆)).

Recall that ultimately we list the set of all possible plausible views at each of the n vertices in
X, and then run a dynamic programming algorithm whose running time is polynomial in the total
number of views. Thus, overall our running time is O(poly(n∆)).

Techniques of this paper. The idea of enumerating selected pieces of information about the
embedding and combining these pieces using dynamic programming over an amenable structure
such as a tree or line, has a long tradition in the embedding community. See for example [KRS04,
BDG+05, FFL+13, NR15, NR17], which includes previous works by the authors. However, which
pieces of information to consider and how to apply the dynamic programming is problem specific,
and is what distinguishes these result from one another. Thus it is important to note that while for
consistency we adopt the terminology of “views” previously used by the authors in [NR15,NR17],
the information contained in these views differs substantially. Moreover, the main idea of defining
approximate distance relative to anchor points is new, and has the potential for future applications
(as well as potentially improving/simplifying previous results). Additionally, in these listed previous
works the target structure (a tree or line) was known and fixed (though which points map to which
vertices was not), and so the dynamic programming was more natural. Interestingly in our case,
as the tree structure is not fixed in advance, our dynamic programming is not done over the tree,
though still manages to compute it in the end.

4 Bijective embedding into trees

In this section, we consider the problem of embedding a metric space (X, dX), with doubling
dimension λ and spread ∆ into a weighted tree T = (X,ET , wT ) with vertex set X (i.e. defining
a bijection), and maximum degree deg. We use δopt(X, deg) to denote the minimum achievable
distortion of such an embedding. We show a (1 + ε)-approximation algorithm for finding this
optimal embedding (Theorem 4.13). Theorem 1.1 is then immediately implied from Theorem 4.13
and Corollary 5.3.

4.1 Setup

During this section assume that the smallest distance in X is one, so the largest distance is ∆.
This can be ensured by scaling X. Let δ ≥ δopt(X, deg), and let a be an arbitrary fixed point of X,
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called the anchor. Let {x0} = X≥S+1 ⊆ X≥S ⊆ . . . ⊆ X≥0 = X, where X≥s is a maximal subset
of points with mutual distances at least δs, S = dlogδ(∆)e, and x0 ∈ X is an arbitrary point. For
technical reasons we extend these sets to be defined for negative values of s, where X≥s = X for
any negative value s. A point x ∈ X is called a scale s point if X≥s is the sparsest net in the
sequence that contains x. The scale s nearest neighbor of a point x ∈ X is denoted by nns(x),
and is defined to be the closest point of X≥s to x. Note that by the maximality of X≥s, we have
that dX(x, nns(x)) < δs. Therefore, for example, nns(x) = x for all x ∈ X and for any s ≤ 0.

We build a tree into which X can be embedded with nearly optimal distortion in this section.
Part of the process is to find the edge weights of this tree. The following lemma limits the range
of the search space for the weight values, while ensuring a bounded approximation factor.

Lemma 4.1. Let G = (V,E,w) be a graph with minimum edge weight one, and let dG be the
shortest path metric of G. For any 0 < σ ≤ 1, G can be embedded to a graph G′ = (V,E,w′) whose
edge weights are multiples of σ with distortion at most 1 + σ.

Proof. Let G′ = (V,E,w′) be the graph obtained from G by setting the weight of each edge e to
w′(e) = dw(e)/σe · σ. We bound the distortion of the identity map from (V, dG) to (V, dG′). Since
w′(e) ≥ w(e) the map is non-contracting. Furthermore, for each e = (x, y) ∈ E, we have

w′(e) ≤ w(e) + σ ≤ w(e) ·
(

1 +
σ

w(e)

)
≤ w(e) · (1 + σ) ,

as w(e) is at least one. Hence, by Lemma 2.2, the distortion is at most 1 + σ.

4.2 Views

The key building blocks used in our algorithm are views, which are collections of relevant information
about what the embedding looks like around the images of points in X. This information is limited
in scope so that it can be guessed by our algorithm. Specifically the view at a vertex x (‘vertex’
signifying it is the image of the ‘point’ x), specifies the degree of the image of x, the location of
the anchor vertex relative to the image of x, and approximate relative locations of the images of
all scale s points that are at distance O(δs+2) from x in the preimage. To describe the location of
the anchor vertex we specify the branch (edge) adjacent to vertex x which leads to the anchor as
well as the exact distance to the anchor. Similarly, for each vertex y which is the image of one of
these scale s points, we specify the branch, but rather than specifying the distance to y exactly we
just record the number of beacon ring crossings (as described in the overview) of the x-to-y path
in the image.

Formally, a view Vx = (degx, (A
b
x, A

d
x), {(bsx, rsx)}L≤s≤S) at x ∈ X is a tuple with parameters

(deg, σ, c, δ) where each component is defined as follows.

(1) An integer, degx ∈ {1, 2, . . . , deg}.

(2) (a) Abx ∈ {1, 2, . . . ,degx} ∪ {null}.
(b) Adx ∈ {0, σ, 2σ, . . . , bδ∆/σc · σ}.

(3) For each L ≤ s ≤ S

(a) bsx : X≥s ∩B(x, c · δs+2)→ {1, . . . , degx} ∪ {null}.
(b) rsx : X≥s ∩B(x, c · δs+2)→ {0, 1, 2, . . . , bcδ3c}.
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In the definition above we set L = b−(logδ c + 3)c, as the minimum distance in X is one, and so
B(x, c · δs) is empty for s ≤ L. Throughout the text c is considered to be a sufficiently large value,
which will be specified later, and intuitively acts as a dial controlling the approximation quality of
the embedding. Whenever, it is clear from the context, we drop the specification of the parameters
to simplify the explanation. We say that a point y is visible under Vx at scale s, if it is in the
domain of bsx and rsx. We say that a point y is visible under Vx if there exists an L ≤ s ≤ S such
that y is is visible under Vx at scale s.

The first step of our algorithm is to list the set of possible views at every point of X. The
following lemma bounds the number of such views.

Lemma 4.2. There are at most 1
σ · (c∆)O(logδ(c·deg))(2cδ2)λ different views at any x ∈ X. Moreover,

a list of these views can be constructed in time linear in the list size.

Proof. We enumerate all possibilities for a view Vx = (degx, (A
b
x, A

d
x), {(bsx, rsx)}L≤s≤S) at x. For

the first parameter degx in the tuple, there are at most deg possibilities. For (Abx, A
d
x) there are at

most (deg + 1)(δ∆/σ + 1) possibilities.
So what remains is to bound the possibilities for the bsx and rsx functions. For each point

y ∈ X≥s∩B(x, c·δs+2) and for each scale L ≤ s ≤ S, there are at most deg+1 possibilities for bsx(y),
and at most cδ3 +1 possibilities for rsx(y). By Lemma 2.1, there are at most (2cδs+2/δs)λ = (2cδ2)λ

points in X≥s ∩ B(x, c · δs+2). Therefore, for any L ≤ s ≤ S, there are at most ((deg + 1) · (cδ3 +

1))(2cδ2)λ number of choices for bsx and rsx.
There are S − L+ 1 scales overall, so the total number of views at x is at most:

deg · (deg + 1)(δ∆/σ + 1) ·
(

((deg + 1) · (cδ3 + 1))(2cδ2)λ
)dlogδ(∆)e−b−(logδ c+3)c+1

=
∆

σ

(
(deg · cδ)O(logδ(c∆))(2cδ2)λ

)
=

∆

σ

(
δO(logδ(c·deg) logδ(c∆))(2cδ2)λ

)
=

1

σ
(c∆)O(logδ(c·deg))(2cδ2)λ .

Feasibility/Plausibility. From a list of views generated by Lemma 4.2, we would like to only
keep the views that can be completed into feasible trees on X, that is trees that define non-
contracting embeddings of expansion at most δ. To formally describe our desired properties for
such views, we define restriction of embeddings, and extensions of views as follows.

Let T = (X,ET , wT ) be a tree, and let x ∈ X. We define the restricted view of T around x
to be the view Vx = (degx, (A

b
x, A

d
x), {(bsx, rsx)}L≤s≤S) specified as follows.

(1) degx = degT (x), where degT (x) denotes the degree of x in T .

(2) Adx = bdT (a, x)/σc · σ.

(3) Fix a global ordering on the edges of T , and let ` : adj(x) → {1, . . . ,degx} be the bijection
that (for every 1 ≤ i ≤ degx) assigns the ith element of adj(x) to i. We have:

(a) If x = a then Abx = null, otherwise Abx = `(e), where e is the first edge of the x-to-a path
in T .

(b) For each L ≤ s ≤ S and y ∈ X≥s ∩B(x, c · δs+2),

(i) If x = y then bsx(y) = null, otherwise bsx(y) = `(e), where e is the first edge of the
x-to-y path in T .

(ii) rsx(y) = bdT (x, a)/δsc + bdT (y, a)/δsc - 2bdT (u, a)/δsc, where u is the vertex in T
that is closest to a on the path from x to y, i.e. u is the lowest common ancestor of
x and y if the root is a. (Roughly speaking, up to the δs factors this is the distance
between x and y as dT (x, u) + dT (y, u) = dT (x, y))
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Note that the restricted view of T around x is uniquely defined for fixed values of a, deg, δ, c,
and σ. If Vx is the restricted view of T around x, we say that T is an extension of Vx. Note that
a view can possibly be extended to several different trees. A view is called feasible if it can be
extended to a feasible tree. Such an extension is called a feasible extension of the view.

Ideally, we would like to be able to disregard all non-feasible views from the lists computed
by Lemma 4.2. However, it seems impossible to determine feasibility by merely examining a view
in isolation from other views. Fortunately, the following weaker condition on views, which can be
tested quickly, suffices for our algorithm. We say that a view Vx is plausible if for any L ≤ s ≤ S
and any y ∈ Dom(rsx), we have

dX(x, y)− 2δs ≤ rsx(y) · δs ≤ δdX(x, y) + 2δs.

Note radii of successive beacon rings differ by δs, and hence the need for the additive factor of 2δs,
as this is longest a shortest path can be without crossing a beacon ring. Moreover, observe that
at a sufficiently small scale the additive error in the above definition will become a multiplicative
one. Intuitively a view is plausible if non-feasibility of the view cannot be concluded by examining
it in isolation from other views. The following lemma ensures that the plausibility of a view can
be checked efficiently.

Lemma 4.3. There is an O((2cδ2)λ · logδ(c∆)) time algorithm to check the plausibility of a view.

Proof. Let Vx = (degx, (A
b
x, A

d
x), {(bsx, rsx)}L≤s≤S) be a view at x ∈ X. For each L ≤ s ≤ S, we

have |Dom(rsx)| ≤ (2cδ2)λ (by Lemma 2.1). For each element in Dom(rsx) the plausibility condition
can be checked in constant time. Therefore, the total running time for checking plausibility is
O((2cδ2)λ · (S − L)) = O((2cδ2)λ · logδ(c∆)).

The partition function. Although a view provides information only about the images of a
relatively small subset of X, more can be deduced from it. Specifically, a view Vx at x uniquely
determines the connected components of T\{x} for every feasible extension T of Vx (if any exists).
Note that a priori it is not even clear that these connected components must be the same in different
feasible extensions of Vx.

Lemma 4.4. Let Vx = (degx, (A
b
x, A

d
x), {(bsx, rsx)}L≤s≤S) be any view at x ∈ X. There is an

algorithm to compute a partition P of X\{x} in O(n logδ(c∆)) time with the following property.
• For every feasible extension T of Vx, and any y, z ∈ X\{x}, y and z belong the the same

connected component of T\{x} if and only if y and z belong to the same set of P .

Proof. Let y ∈ X, and let s be the smallest scale such that bsx and rsx act on nns(y), where s is
well defined as bSx acts on all X≥S . We show that y and nns(y) must belong to the same connected
component of T\{x} in any feasible extension T of Vx. Note that since bsx acts on nns(y), the
connected component containing nns(y) is specified by Vx, and so the lemma statement will then
follow.

By the definition of nns(y) and the feasibility of T , we have:

dX(y, nns(y)) ≤ δs ⇒ dT (y, nns(y)) ≤ δs+1.

Suppose, to derive a contradiction, that y and nns(y) belong to different connected components of
T\{x}. That is, the path from y to nns(y) in T contains x. Consequently,

dT (x, y) ≤ dT (y, nns(y)) ≤ δs+1.
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As T is feasible, it defines a non-contracting embedding. It follows that dX(x, y) ≤ δs+1. So, by
the triangle inequality, we have:

dX(x, nns−1(y)) ≤ dX(x, y) + dX(y, nns−1(y)) ≤ δs+1 + δs−1 ≤ 2δs+1.

Therefore, bs−1
x must act on nns−1(y) (assuming c ≥ 2), which is a contradiction with the assump-

tion that s is the smallest scale for which bsx acts on nns(y).

4.3 Consistency of views

Ultimately we wish to stitch together plausible views at different vertices to yield a feasible tree.
To this end, in order to stitch together views they must have consistent descriptions of that tree.
As a first step, we define when two plausible views can be stitched together over an edge.

Let x, y ∈ X. Let Vx = (degx, (A
b
x, A

d
x), {(bsx, rsx)}L≤s≤S) and Vy = (degy, (A

b
y, A

d
y), {(bsy, rsy)}L≤s≤S)

be plausible views at x and y, respectively. Let i ∈ {1, 2, . . . ,degx}, and j ∈ {1, 2, . . . ,degy}. We
say that Vx and Vy can be stitched together over (i, j) if the following consistency conditions hold.

(1) Either Abx = i or Aby = j, but not both.

(2) For each L ≤ s ≤ S, and each z ∈ Dom(bsx) ∩Dom(bsy) one of the following conditions hold

(a) Either bsx(z) = i or bsy(z) = j, but not both.

(b1) If bsx(z) = i and Abx 6= i then rsx(z)− rsy(z) = bAdy/δsc − bAdx/δsc.

(b2) If bsx(z) = i and Abx = i then rsx(z)− rsy(z) = bAdx/δsc − bAdy/δsc.

(b3) If bsx(z) 6= i and Abx = i then rsy(z)− rsx(z) = bAdx/δsc − bAdy/δsc.

(b4) If bsx(z) 6= i and Abx 6= i then rsy(z)− rsx(z) = bAdy/δsc − bAdx/δsc.

(b1) (b2) (b3) (b4)

Figure 5: Consistency conditions (2)-(b1) to (2)-(b4).

The following lemma gives an algorithm to check consistency conditions for given Vx, Vy, i, and j.

Lemma 4.5. Let Vx = (degx, (A
b
x, A

d
x), {(bsx, rsx)}L≤s≤S) and Vy = (degy, (A

b
y, A

d
y), {(bsy, rsy)}L≤s≤S)

be plausible views at x and y, respectively. Let i ∈ {1, 2, . . . ,degx}, and j ∈ {1, 2, . . . ,degy}. There

is an O((2cδ2)2λ · logδ(c∆)) time algorithm to check if Vx and Vy can be stitched together over (i, j).

Proof. Condition (1) can be checked inO(1) time. For each L ≤ s ≤ S, we have |Dom(bsx)| ≤ (2cδ2)λ

and |Dom(bsy)| ≤ (2cδ2)λ. Therefore, their intersection can be computed in O((2cδ2)2λ) time. For
each element in the intersection, conditions (a) and (b1) through (b4) can be checked in constant
time. Therefore, the total running time for checking condition (2) is O((2cδ2)2λ · (S − L)) =
O((2cδ2)2λ · logδ(c∆)).
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Consistent set of views. The images of two points x, y ∈ X can be adjacent in an optimal tree
only if there are plausible views at each of them that can be stitched together. By stitching together
pairs of plausible views one at a time, our algorithm builds a tree T over X, and an accompanying
collection of views for each vertex in X that can be stitched together over the edges of T . We call
such a collection a consistent set over T , and formally define it as follows.

Let V be a set of plausible views, one at each vertex of X, and let T = (X,ET , wT ) be a tree. We
say that V is a consistent set of views over T if there are bijections `x : adj(x)→ {1, 2, . . . ,degx}
for all x ∈ X with the following properties.

(1) For each e = (x, y) ∈ ET and the corresponding views Vx, Vy ∈ V, we have that Vx and Vy
are consistent over (`x(e), `y(e)), and wT (e) = |Adx −Ady|.

(2) For each x and its corresponding view Vx = (degx, (A
b
x, A

d
x), {(bsx, rsx)}L≤s≤S), the following

three conditions are equivalent (i) Abx = null, (ii) Adx = 0, and (iii) x = a.

4.4 A consistent set is all we need

Ultimately our algorithm will attempt to grow a nearly optimal tree from the anchor a using
dynamic programming. The space of possible trees over X is far too large to be explored. Thus
additionally we guess a view at each vertex as we go, as this will severely limit the possibilities for
the subtrees. To this end, in this section we show that limiting to the space of trees with such views
is valid. That is, if any set of views with parameters (deg, σ, c, δ) are consistent over a tree T then
it implies the distortion of the embedding defined by T is close to δ (how close depends on c and σ,
and is specified below). Thus any set of consistent views will suffice. Moreover, we first show, by
considering the restriction of any feasible embedding, that at least one consistent set must exist.

Lemma 4.6. Let (X, dX) be a metric space, and let δopt = δopt(X, deg) be the optimal distortion
for embedding X into a tree of max degree at most deg. For any 0 < σ ≤ 1 and any c ≥ 1, there
exists a set of plausible views V with parameters (deg, σ, c, (1 + σ)δopt), and a tree T = (X,ET , wT )
of maximum degree deg such that V is consistent over T .

Proof. Let T ′ = (X,ET ′ , wT ′) be a tree, into which X can be embedded with distortion δopt. By
Lemma 4.1, there is a tree T = (X,ET , wT ) whose edge weights are multiples of σ, into which T ′

can be embedded with distortion 1 + σ. Therefore, X can be embedded into T with distortion
(1 + σ) · δopt. Suppose after relabeling the vertices of T that the identity map from (X, dX) to
(X, dT ) has distortion (1 + σ) · δopt. For each x ∈ X, let Vx be the restricted view of this identity
map at x in T with parameters deg, σ, c, and δ = (1 + σ) · δopt. Let V =

⋃
x∈X Vx. We show that

V is a set of consistent views over T .

First, for any x, we show that Vx is plausible. By the definition of restriction we have:

rsx(y) = bdT (x, a)/δsc+ bdT (y, a)/δsc − 2bdT (u, a)/δsc,

where u is the closest vertex to a on the x-to-y path. Removing the floors we obtain:

dT (x, a) + dT (y, a)− 2dT (u, a)

δs
− 2 ≤ rsx(y) ≤ dT (x, a) + dT (y, a)− 2dT (u, a)

δs
+ 2

The definition of u implies dT (x, y) = dT (x, a) + dT (y, a)− 2dT (u, a), therefore, we obtain:

dT (x, y)− 2δs ≤ rsx(y) · δs ≤ dT (x, y) + 2δs.
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Since the embedding into T is feasible, i.e. non-contracting with expansion at most δ, we conclude

dX(x, y)− 2δs ≤ rsx(y) · δs ≤ δdX(x, y) + 2δs.

Next, we show the mutual consistency between these sets of restricted views. Let x, y ∈ X, and
let Vx = (degx, (A

b
x, A

d
x), {(bsx, rsx)}L≤s≤S) and Vy = (degy, (A

b
y, A

d
y), {(bsy, rsy)}L≤s≤S) be restricted

views of the identity map around x and y in T , respectively. Also, let `x and `y be the labeling
functions induced by the restrictions to x and y. Suppose, e = (x, y) ∈ ET . We show that Vx and
Vy can be stitched together over `x(e) and `y(e) with weight wT (e). Condition (1) and (2-a) of
consistency are implied by the restriction definition, items (3-a) and (3-b-i). It remains to show
that conditions (2-b1) through (2-b4) hold. For any L ≤ s ≤ S and any z ∈ Dom(bsx) ∩ Dom(bsy),
we have

rsx(z) = bdT (x, a)/δsc+ bdT (z, a)/δsc − 2bdT (ux,z, a)/δsc,

and
rsy(z) = bdT (y, a)/δsc+ bdT (z, a)/δsc − 2bdT (uy,z, a)/δsc,

where ux,z is the closest vertex of the x-to-z path to a, and uy,z is the closest vertex of the y-to-z
path to a. We consider conditions (2-b1) through (2-b4) (looking at Figure 5 while reading the
following cases may help the reader). Let i = `x(e) for the following case analysis.

Case (2-b1) or (2-b3): We have bsx(z) = i and Abx 6= i, or, bsx(z) 6= i and Abx = i. In both cases, we
have ux,z = x and uy,z = y. Therefore,

rsx(z)− rsy(z) = bdT (y, a)/δsc − bdT (x, a)/δsc = bAdy/δsc − bAdx/δsc.

Case (2-b2) or (2-b4): we have bsx(z) = i and Abx = i, or, bsx(z) 6= i and Abx 6= i. In both cases, it is
implied that ux,z = uy,z. Therefore,

rsx(z)− rsy(z) = bdT (x, a)/δsc − bdT (y, a)/δsc = bAdx/δsc − bAdy/δsc.

In both cases, the last equality holds because weights of T are integer multiples of σ.

Next, we show that a consistent set over a tree guarantees near optimal distortion. To that
end, we need a few definitions and helper lemmas.

Let T = (X,ET , wT ) be a tree, and let γ = (v1, . . . , vk) be a path in T . We say that γ is
approaching if dT (v1, a) ≥ dT (v2, a) ≥ . . . ≥ dT (vk, a). We say that γ is departing if dT (v1, a) ≤
dT (v2, a) ≤ . . . ≤ dT (vk, a). Finally, we say that γ is monotone if it is approaching or departing.
Note that any (simple) path γ can be decomposed into γ− ◦ γ+, such that γ− is approaching and
γ+ is departing. We show that very accurate information can be deduced from the views of two
vertices x and y if the path between them in T is approaching or departing.

Lemma 4.7. Let V be a consistent set of views over T = (X,ET , wT ). Let x, y ∈ X, and let Vx
and Vy be the views at x and y, respectively. Finally, let γ be the unique x-to-y path in T . If γ is
approaching then dT (x, y) = Adx −Ady, and if γ is departing then dT (x, y) = Ady −Adx.

Proof. Let γ = (x = v1, . . . , vk = y). Suppose γ is approaching, the other case is similar. We use
induction on k to prove the statement. If k = 1 then x = y, and the statement trivially holds. If
k > 1, let t = vk−1, and let Vt ∈ V be the view at t. By the induction hypothesis, dT (x, t) = Adx−Adt .
Since γ is approaching, Abt points to the edge (t, y), and thus since Vt and Vy are consistent over
the edge (t, y) in T , we have that dT (t, y) = wT (t, y) = Adt −Ady. Overall,

dT (x, y) = dT (x, t) + wT (t, y) = (Adx −Adt ) + (Adt −Ady) = Adx −Ady
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Lemma 4.8. Let V be a consistent set of views over T = (X,ET , wT ). Let x, y, z ∈ X, and let Vx
and Vy be the views at x and y, respectively. Finally, let γ be the unique x-to-y path in T . Suppose γ
is monotone and z is in the same connected component with either x or y in T\(γ\{x, y}). If a and
z belong to the same connected component of T\(γ\{x, y}) then rsx(z)−rsy(z) = bAdx/δsc−bAdy/δsc.
Otherwise, rsx(z)− rsy(z) = bAdy/δsc − bAdx/δsc.

Proof. Let γ = (x = v1, . . . , vk = y) . We use induction on k to prove the statement. If k = 1 then
x = y, and the statement trivially holds. If k > 1, let t = vk−1, and let Vt ∈ V be the view at
t. Note that in the lemma statement we assume that z is in the connected component of either x
or y in T\(γ\{x, y}), and so z is in the connected component of x or t in T\(γ[x, t]\{x, t}) First,
consider the case that a and z belong to the same connected component of T\(γ\{x, y}). By the
induction hypothesis,

rsx(z)− rst (z) = bAdx/δsc − bAdt /δsc. (1)

Since Vt and Vy are consistent over the edge (t, y) in T , and Abt and bst (z) are the same, one of
conditions (2-b2) or (2-b4) holds. In either case,

rst (z)− rsy(z) = bAdt /δsc − bAdy/δsc.

Substituting in Equation (1) we obtain the lemma statement.
Next, consider the case that a and z belong to different connected components of T\(γ\{x, y}).

By the induction hypothesis,

rsx(z)− rst (z) = bAdt /δsc − bAdx/δsc. (2)

Since Vt and Vy are consistent over the edge (t, y) in T , and Abt and bst (z) are different, one of
conditions (2-b1) or (2-b3) holds. In either case,

rst (z)− rsy(z) = bAdy/δsc − bAdt /δsc.

Substituting in Equation (2) we obtain the lemma statement.

Next, we show that the distance estimators in the views provide relatively accurate estimations
for the distance of visible vertices in T .

Lemma 4.9. Let V be a consistent set of views over T = (X,ET , wT ). Let x, z ∈ X, Vx ∈ V be
the view at x, and L ≤ s ≤ S. If z is visible in Vx at scale s then

dT (x, z)− 4δs ≤ rsx(z) · δs ≤ dT (x, z) + 4δs

Proof. Let γ = (x = v1, . . . , vk = z) be the unique x-to-z path in T . As noted above, γ can be
decomposed into two subpaths γ− = (v1, . . . , vj = y), and γ+ = (y = vj , vj+1, . . . , vk) such that γ−

is approaching, and γ+ is departing. Thus y is the closest point of γ to the anchor point in T . By
Lemma 4.7, we have

dT (x, y) = Adx −Ady, & dT (y, z) = Adz −Ady.

Therefore,

dT (x, z) = Adz +Adx − 2Ady. (3)

On the other hand, by Lemma 4.8 we know

rsx(z)− rsy(z) = bAdx/δsc − bAdy/δsc, & rsy(z)− rsz(z) = bAdz/δsc − bAdy/δsc.
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Consequently,
rsx(z)− rsz(z) = bAdx/δsc+ bAdz/δsc − 2bAdy/δsc. (4)

To obtain the desired statement, we combine Equations (3) and (4), while noting that the
definition of plausible views implies rsz(z) ∈ {−2,−1, 0, 1, 2} (as dX(z, z) = 0). First we show the
upper bound for rsx(z) · δs.

rsx(z) · δs = bAdx/δsc · δs + bAdz/δsc · δs − 2bAdy/δsc · δs + rsz(z) · δs

≤ (Adx/δ
s) · δs + (Adz/δ

s) · δs − 2(Ady/δ
s − 1) · δs + 2δs

= Adx +Adz − 2Ady + 2δs + 2δs

≤ dT (x, z) + 4δs.

Next, we show the lower bound for rsx(z) · δs.

rsx(z) · δs = bAdx/δsc · δs + bAdz/δsc · δs − 2bAdy/δsc · δs + rsz(z) · δs

≥ (Adx/δ
s − 1) · δs + (Adz/δ

s − 1) · δs − 2(Ady/δ
s) · δs − 2δs

= Adx − δs +Adz − δs − 2Ady − 2δs

≥ dT (x, z)− 4δs

Now, we are ready to bound the distortion of distances on T . First, we show that this distortion
is bounded for a pair of vertices if one is visible under the view at the other one.

Lemma 4.10. Let V be consistent set of views over T = (X,ET , wT ), let x, z ∈ X, and let Vx ∈ V
be the view at x. If z is visible in Vx then(

1− 6

c

)
· dX(x, z) ≤ dT (x, z) ≤

(
1 +

6

c

)
· δ · dX(x, z).

Proof. Note that if x = z the lemma statement trivially holds, thus, assume otherwise. Let L ≤
s ≤ S be the smallest scale such that z is visible at scale s in Vx. Since z is visible, and Vx is
plausible, we have

dX(x, z)− 2δs ≤ rsx(z) · δs ≤ δdX(x, z) + 2δs.

Also, by Lemma 4.9,
dT (x, z)− 4δs ≤ rsx(z) · δs ≤ dT (x, z) + 4δs.

Consequently, we have,

dX(x, z)− 6δs ≤ dT (x, z) ≤ δdX(x, z) + 6δs. (5)

On the other hand, since z is not visible at scale s− 1, we have

cδs+1 < dX(x, z)⇒ δs ≤ dX(x, z)

c
.

Substituting in Equation (5) we obtain(
1− 6

c

)
· dX(x, z) ≤ dX(x, z)− 6 · δs ≤ dT (x, z) ≤ δdX(x, z) + 6 · δs ≤

(
1 +

6

c

)
· δ · dX(x, z).

Finally, we bound the distortion for any pair of vertices, even if they are not visible under each
other’s views.
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Lemma 4.11. Let V be a consistent set of views over T = (X,ET , wT ), and let x, z ∈ X. We
have, (

1− 14

c− 1

)
· dX(x, z) ≤ dT (x, z) ≤

(
1 +

20

c− 1

)
· δ · dX(x, z).

Proof. Note that if x = z the lemma statement trivially holds, thus, assume otherwise. Let s be
the smallest scale such that nns(z) is visible at Vx, where s is well defined as bSx acts on all X≥S .
First, we show that dX(z, nns(z)) is small compared to dX(x, z). By the definition of the scale
nearest neighbors we have,

dX(z, nns(z)) ≤ δs & dX(z, nns−1(z)) ≤ δs−1. (6)

Since nns−1(z) is not visible at Vx we have,

dX(x, nns−1(z)) ≥ c · δs+1,

and therefore,

dX(x, z) ≥ dX(x, nns−1(z))− dX(z, nns−1(z)) ≥ cδs+1 − δs−1 ≥ (c− 1)δs+1.

Combining with (6) we obtain,

dX(z, nns(z))

dX(x, z)
≤ δs

(c− 1)δs+1
⇒ dX(z, nns(z)) ≤

dX(x, z)

(c− 1)δ
. (7)

Now we use Inequality (7) and Lemma 4.10 to show bounds for the dT (x, z). By our assumption
nns(z) is visible in Vx. Furthermore, as dX(z, nns(z)) ≤ δs, by the definition of nets, nns(z) is
visible in Vz. First, we show the upper bound.

dT (x, z) ≤ dT (x, nns(z)) + dT (nns(z), z) (Triangle inequality)

≤
(

1 +
6

c

)
· δ · (dX(x, nns(z)) + dX(nns(z), z)) (Lemma 4.10)

≤
(

1 +
6

c

)
· δ · (dX(x, z) + 2dX(nns(z), z)) (Triangle inequality)

≤
(

1 +
6

c

)
· δ ·

(
dX(x, z) +

2dX(x, z)

(c− 1)δ

)
(Inequality (7))

≤
(

1 +
6

c

)
· δ ·

(
1 +

2

c− 1

)
· dX(x, z) (because δ ≥ 1)

≤
(

1 +
20

c− 1

)
· δ · dX(x, z)
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Next, we show the lower bound.

dT (x, z) ≥ dT (x, nns(z))− dT (nns(z), z) (Triangle ineq.)

≥
(

1− 6

c

)
· dX(x, nns(z))−

(
1 +

6

c

)
· δ · dX(nns(z), z) (Lemma 4.10)

≥
(

1− 6

c

)
· (dX(x, z)− dX(z, nns(z)))−

(
1 +

6

c

)
· δ · dX(nns(z), z) (Triangle ineq.)

≥
(

1− 6

c

)
· dX(x, z)−

((
1 +

6

c

)
· δ +

(
1− 6

c

))
· dX(nns(z), z)

≥
(

1− 6

c

)
· dX(x, z)−

((
1 +

6

c

)
· δ +

(
1− 6

c

))
· dX(x, z)

(c− 1)δ
(Inequality (7))

≥
(

1− 6

c
− 1

c− 1
− 6

c(c− 1)
− 1

(c− 1)δ
+

6

c(c− 1)δ

)
· dX(x, z)

≥
(

1− 6

c
− 2

c− 1
− 6

c(c− 1)

)
· dX(x, z) (because δ ≥ 1)

≥
(

1− 14

c− 1

)
· dX(x, z)

4.5 Dynamic programming

In the previous section we defined the notion of a consistent set V of plausible views over the
entire set X. This definition can be naturally extended to views over subsets of X. Specifically, let
Y ⊆ X, let x ∈ Y , let V be a set of plausible views at the vertices of Y , and let T = (Y,ET , wT )
be a positively weighted tree. We say that V is a consistent set over subtree T with root
x if there are bijections for each y ∈ Y \ {x}, `y : adj(y) → {1, 2, . . . ,degy}, and a bijection

`x : adj(x)→ {1, 2, . . . ,degx}\{Abx}, such that:

(1) For each edge e = (u, v) ∈ ET and the corresponding views Vu, Vv ∈ V, we have that Vu and
Vv are consistent over (`u(e), `v(e)), and wT (e) = |Adu −Adv|.

(2) For any view Vu ∈ V, the following three conditions are equivalent (i) Abu = null, (ii) Adu = 0,
and (iii) u = x = a.

Comparing with our previous definition of consistency, observe that V is a consistent set over
subtree T with root a, if and only if V is a consistent set over tree T .

Lemma 4.12. Let X be an n-point metric space, with doubling dimension λ, and spread ∆. For
any δ > 0, ε > 0, and deg > 0 there is a

n2 ·
(

∆

ε

)logδ(deg/ε)(O(δ2/ε))λ

time algorithm to compute a (1+ε)δ distortion embedding of X into a tree T of maximum degree deg
if δ ≥ δopt(X, deg). If δ < δopt(X, deg), this algorithm either computes an embedding of distortion
(1 + ε)δ or (correctly) decides that δ < δopt(X, deg).

Proof. First suppose that δ ≥ δopt(X, deg). Lemma 4.6 then guarantees the existence of a set of
views, one for each x ∈ X, with parameters (deg, σ, c, (1 + σ)δ) that are consistent over some tree
T . (Since if there is (deg, σ, c, (1 + σ)δopt) set of consistent views then there is a (deg, σ, c, (1 + σ)δ)
set of consistent views). Moreover, Lemma 4.11 implies that if there is a consistent set of views
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over some T with parameters (deg, σ, c, (1 + σ)δ) then T defines an embedding with distortion at
most((

1 +
20

c− 1

)/(
1− 14

c− 1

))
· (1 + σ) · δ ≤

(
1 +

20

c− 1

)
·
(

1 +
28

c− 1

)
· (1 + σ) · δ

=

(
1 +

20

c− 1
+

28

c− 1
+

560

(c− 1)2

)
· (1 + σ) · δ ≤

(
1 +

608

c− 1

)
· (1 + σ) · δ,

which is at most (1 + ε)δ for c = 3×608
ε + 1 and σ = ε/3.7 So set c and σ to these values and let

δ′ = (1 + σ)δ. Then the above two statements combined imply that to prove the lemma, it suffices
to give an algorithm which finds any consistent set of views (over some tree) with parameters
(deg, σ, c, δ′), if one exists, and otherwise returns δ < δopt(X, deg). We now describe a recursive
algorithm which we then memoize to compute such a set of views.

Consider any collection V of views, with exactly one view Vx for each x ∈ X, with parameters
(deg, σ, c, δ′). Given a weighted tree T on vertex set X, we first consider the simpler task of checking
whether V is consistent over T . As discussed above, this is equivalent to saying that V is consistent
over subtree T with root a. Let Ta = T and Va = V, and for any x 6= a in X, let Tx denote
the subtree rooted at x and not containing a, and similarly let Vx be the subset of views over the
vertices in this subtree. Also, let adj′(x) denote all neighbors of x other than the one on the path
to a, that is adj′(x) are the neighbors of x in Tx (note adj′(x) = adj(x) if x = a). Observe that
for any x ∈ X, Vx is a consistent set of views over subtree Tx with root x if and only if for every
y ∈ adj′(x) (1) Vy is a consistent set of views over subtree Ty with root y, and (2) Vx and Vy are
consistent over e = (x, y) with wTx(x, y) = |Adx−Ady|. Note that this is a recursive statement. Thus
to check consistency of Vx over Tx, condition (1) can be checked by recursion, where the base case
is when adj′(x) = ∅, and condition (2) can be checked by the algorithm of Lemma 4.5. To check if
the full set V is consistent over T , we apply this recursive algorithm with x = a.

This immediately implies a recursive algorithm for the harder problem of determining whether
there exists any such collection of views V consistent over some tree T . Namely, consider all possible
views with parameters (deg, σ, c, δ′) that are centered at the anchor a. For each such view Va, we
recursively determine if there is a collection of views containing Va, which is consistent over a
subtree T with root a. To do so consider all possible partitions of X \ {a} into dega subsets (i.e.
subtrees). Then for each subset Z in a given partition we try all possible views over all members in
Z as the root view, and for each such view Vx, if the view is consistent with Va over the edge (a, x)
(note the weight of the edge will then be |Ada − Adx|), we then recursively check whether there is a
collection of views over Z containing Vx, which is consistent over any subtree TZ with root x. The
correctness of this approach is apparent from the discussion above, however, the running time is
exponential. Specifically, Lemma 4.2 bounds the number of possible views we must consider, but
remembering the subsets and guessing how they are partitioned takes exponential time. However,
we can now make use of Lemma 4.4, which states that for any view Vx, one can compute the
unique partition P = {p1, . . . , pdegx} of X \ {x}, such that if there is a feasible extension of Vx
to an embedding defined by a tree T , then the sets in P must be the sets of vertices form each
component of T \ {x}. Thus if x is a root with a view Vx over some subset Z then we can assume
Z = ∪i∈{1,2,...,degx}\{Abx} pi, and thus Z does not need to be passed as a parameter to the recursive
problem. Moreover, rather than guessing all possible partitions of Z in this subproblem, we just
use the partition P \ {pAbx}.

Each subproblem of this recursive procedure is defined by a root x ∈ X and a view Vx. Thus

7Note that c can be made significantly smaller, however, in this paper to keep the calculations readable we are
not optimizing constants.
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we can setup a dynamic programming table, index by (x, Vx) pairs, and then fill the table using
the above recursive procedure and memoization.

For the running time, there are n choices for x, and (1/σ) · (c∆)O(logδ′ (c·deg))(2c(δ′)2)λ choices for
Vx by Lemma 4.2. Thus, the size of the table is

n

σ
· (c∆)O(logδ′ (c·deg))(2c(δ′)2)λ .

Since we use memoization, each table entry is filled only once. For each table entry, we first compute
its partition, and then independently for each (non-anchor) subset in the partition, and for each
view Vz at a member z in the subset we check if Vx and Vz are consistent (which itself includes
plausibility checks), and if so check the table entry (z, Vz). Ignoring the time spent in recursive
calls, our algorithm thus spends at most

O(n logδ′(c∆))+
(
deg · n

σ
· (c∆)O(logδ′ (c·deg))(2c(δ′)2)λ

)
·O((2c(δ′)2)2λ · logδ′(c∆))

=
n

σ
· (c∆)O(logδ′ (c·deg))(2c(δ′)2)λ

time per table entry, where the first term is the time it takes to compute the partition (Lemma 4.4),
and last part of the second term is the time to check for a pair of views whether each is plausible
and whether they are consistent (Lemma 4.3 and Lemma 4.5). Therefore, the total running time
of the algorithms is(n

σ
· (c∆)O(logδ′ (c·deg))(2c(δ′)2)λ

)
·
(n
σ
· (c∆)O(logδ′ (c·deg))(2c(δ′)2)λ

)
=
n2

σ2
· (c∆)O(logδ′ (c·deg))(2c(δ′)2)λ

As discussed above, in order to obtain a 1 + ε approximation, we had set c = O(1
ε ), σ = O(ε),

and δ′ = (1 + σ)δ, and thus the running time of our algorithms is

n2

ε2
·
(

∆

ε

)logδ(deg/ε)(O(δ2/ε))λ

= n2 ·
(

∆

ε

)logδ(deg/ε)(O(δ2/ε))λ

.

Theorem 4.13. Let X be an n-point metric space, with doubling dimension λ and spread ∆. For
any 0 < ε < 1 and deg > 1, where δopt = δopt(X, deg), there is an algorithm with running time

n2 ·
(

∆

ε

)log(deg/ε)·(1/ε)·(O(δ2opt/ε))
λ

to compute a (1 + ε)δopt distortion embedding of X into a tree T of maximum degree deg.

Proof. Consider the set L = {δi = (1 + ε/2)i|1 ≤ i ≤ n∆}. Our algorithm calls the procedure of
Lemma 4.12 with ε = ε/3 and δ = δi, in increasing order of δi, until it first successfully finds an
embedding. Note that since X can always be embedded into a path with distortion at most n∆,
our algorithm will always find an embedding. To bound the distortion of the computed embedding,
let 1 ≤ j ≤ n∆ be such that (1 + ε/2)j−1 ≤ δopt(X, deg) ≤ (1 + ε/2)j . Then the procedure of
Lemma 4.12 will return an embedding of distortion at most (1 + ε/2)j · (1 + ε/3) if it is called with
parameters δ = δj = (1 + ε/2)j and ε = ε/3. Thus we get an embedding with distortion at most

(1 + ε/2)j · (1 + ε/3) ≤ δopt · (1 + ε/2) · (1 + ε/3) ≤ δopt · (1 + ε).

It remains to bound the running time of our algorithm. We call the procedure of Lemma 4.12
O(log1+ε/2(δopt)) times. The running time of each of these procedure calls is bounded by

n2 ·
(

∆

ε

)logδ(deg/ε)(O(δ2/ε))λ

= n2 ·
(

∆

ε

)log1+ε/2(3·deg/ε)(O(δ2/ε))λ

. (8)
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We know via Taylor series expansion, that for 0 ≤ x ≤ 1, log(1+x) ≥ x−x2/2 = (x/2)(2−x) ≥ x/2.
Therefore since 0 < ε < 1,

log1+ε/2(3 · deg/ε) =
log(3 · deg/ε)
log(1 + ε/2)

≤ log(3 · deg/ε)
ε/2

= O

(
log(deg/ε)

ε

)
Substituting in (8) we find out that the running time of each call is bounded by

n2 ·
(

∆

ε

)log1+ε/2(3·deg/ε)(O(δ2/ε))λ

= n2 ·
(

∆

ε

)log(deg/ε)·(1/ε)·(O(δ2/ε))λ

Thus the total running time is

O(log1+ε/2(δopt)) · n2 ·
(

∆

ε

)log(deg/ε)·(1/ε)·(O(δ2/ε))λ

= n2 ·
(

∆

ε

)log(deg/ε)·(1/ε)·(O(δ2opt/ε))
λ

Corollary 5.3 in the next section shows that any tree with doubling dimensions λ can be em-
bedded with (1 + ε) distortion into a tree with maximum degree (O(1/ε))λ. Thus the above lemma
statement can be strengthened to remove the degree assumption, yielding Theorem 1.1.

Proof of Theorem 1.1. By Corollary 5.3, for any ε > 0 there is a tree T = (X,ET , wT ) that de-
fines an embedding of distortion at most (1 + ε)δopt(X) and that has maximum degree O((1/ε)λ).
Therefore, Theorem 4.13 gives a (1 + ε) approximation algorithm by setting deg to O((1/ε)λ) and
ε = ε/3. The running time of the algorithm is

n2 ·
(

∆

ε

)λ log(1/ε)·(1/ε)·(O(δ2opt/ε))
λ

= n2 ·
(

∆

ε

)log(1/ε)·(1/ε)·(O(δ2opt/ε))
λ

= n2 ·
(

∆

ε

)(O(δopt/ε))2λ+1

,

where the last equality slightly weakens our run time bound in order to simplify the expression.

5 Bounded degree trees as host metrics

In this section, we show that a doubling metric space has a nearly optimal bounded degree tree
spanner. In particular, this result implies that a doubling tree can be embedded into a bounded
degree tree with same vertex set nearly isometrically. These results imply that considering bounded
degree trees is sufficient when we study embedding into trees or computing geometric tree spanners.
Specifically, they are used in the proofs of Theorem 1.1 and Theorem 1.3. We start by describing
a simple transformation.

Let (X, dX) be a metric space. Given a subset V ⊆ X, and a point v ∈ V , define the star of
v with respect to the subset V , to be the star graph H = (V,EH , wH) with center v such that
EH = {(v, x) | x ∈ V \ {v}} and wH(v, x) = dX(v, x) for any (v, x) ∈ EH . Let α > 1 be some fixed
value. For any non-negative integer i, let Li = {u ∈ V |αi ≤ dX(v, u) < αi+1}. We refer to Li’s as
layers, and let Lodd =

⋃
(i is odd) Li, and Leven =

⋃
(i is even) Li.

We now define a partition {Pi}1≤i≤p of the set Lodd using the following iterative procedure. For
any round j, if Lodd\(

⋃
1≤i<j Pi) = ∅ then the procedure terminates, otherwise define Pj to be any

maximal subset of vertices in Lodd\(
⋃

1≤i<j Pi) that has at most one vertex in each layer. Using
the same iterative procedure we define the analogous partition {Qi}1≤i≤q of the set Leven.

Let a spider with center v refer to any connected graph, where all vertices other than v have
degree ≤ 2. The star to spider transformation of the star H into the spider H ′ = (V,EH′ , wH′)
is then defined by specifying edges and weights of H ′ as follows (see Figure 6). For each 1 ≤ i ≤ p,
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Figure 6: A star to spider transformation. Blue vertices belong to odd layers, and purple vertices
belong to even layers.

add a path πi that visits every vertex u ∈ Pi ∪ {v} in increasing order of the dX(v, u) distances.
Similarly, for each 1 ≤ i ≤ q, add a path γi that visits every vertex w ∈ Qi∪{v} in increasing order
of the dX(v, w) distances. Finally, for each edge (x, y) ∈ EH′ , set wH′(x, y) = dX(x, y).

Lemma 5.1. Let (X, dX) be a metric space, let H = (V,EH , wH) be a star with center v ∈ V , and
let H ′ = (V,EH′ , wH′) be the graph obtained from H via the star to spider transformation, where
wH and wH′ are restrictions of dX into EH and EH′, respectively.

(1) H ′ is a spider with center v of degree at most 2 ·max(|Li|).
(2) For each (v, x) ∈ EH , we have that dH′(v, x) ≤

(
1 + 2

α−1

)
wH(v, x).

Proof. (1) {Lodd, Leven} is a partition of V , and {P1, P2, . . . , Pp} and {Q1, Q2, . . . , Qq} are partitions
of Lodd and Leven, respectively. Therefore, {P1, P2, . . . , Pp, Q1, Q2, . . . , Qq} is a partition of V . It
follows that all πi’s and γi’s are vertex disjoint paths except for the common vertex v. So, H ′ is a
spider with center v, and p+ q legs. By the maximality of the Pi’s and Qi’s, p = max(i is odd) |Li|,
and q = max(i is even) |Li|, therefore, p+ q ≤ 2 maxi |Li|.
(2) Let (v, x) ∈ EH . Suppose x ∈ Lodd, the proof for the other case is similar. Let πi be the leg of
H ′ that contains x, where πi[x, v] = (x = uk, . . . , u1 = v). We have:

dH′(x, v) = lenH′(πi[x, v]) =

k∑
i=2

wH′(ui, ui−1) =

k∑
i=2

dX(ui, ui−1)

≤
k∑
i=2

(dX(ui, v) + dX(v, ui−1)) =
k∑
i=2

(wH(ui, v) + wH(v, ui−1))

= wH(uk, v) + wH(u1, v) + 2
k−1∑
i=2

wH(ui, v) = wH(x, v) + 2
k−1∑
i=2

wH(ui, v). (9)

On the other hand, for each 2 ≤ i ≤ k − 1, we have that wH(ui, v) ≤ wH(ui+1, v)/α, since ui and
ui+1 belong to two different non-consecutive layers. It follows that, for all 2 ≤ i ≤ k − 1,

wH(ui, v) ≤ αi−kwH(uk, v) = αi−kwH(x, v).

Substituting in (9) we obtain

dH′(x, v) ≤ wH(x, v) + 2

k−1∑
i=2

αi−kwH(x, v) ≤ wH(x, v)

1 + 2

k−2∑
j=1

α−j


≤ wH(x, v)

(
1 +

2α−1

1− α−1

)
≤ wH(x, v)

(
1 +

2/α

(α− 1)/α

)
≤ wH(x, v)

(
1 +

2

α− 1

)
.

Given any metric space, the following lemma guarantees the existence of a low-degree spanning
tree, whose distortion is very close to the optimal distortion of any spanning tree. For a metric
dX : X × X → R+ and a set of pairs E ⊆ X × X, in the following dX [E] : E → R denotes the
restriction of dX to E, that is for any (x, y) ∈ E, dX [E](x, y) = dX(x, y).
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Lemma 5.2. Let (X, dX) be a metric space of doubling dimension λ. Let T = (X,E,w) be a tree
with w = dX [E]. Suppose the identity map from (X, dX) to (X, dT ) has distortion δ. For any
0 < ε < 1, there is a tree T ′ = (X,E′, w′) with maximum degree (O(δ/ε))λ such that w′ = dX [E′]
and the identity map from (X, dX) to (X, dT ′) has distortion at most (1 + ε)δ.

Proof. Pick an arbitrary vertex r ∈ X to be the root of T . For each v ∈ X, let Hv be the star with
center v, whose leaves are the children of v in T . The set H = {Hv|v ∈ V } is a set of edge disjoint
stars whose edge sets partition E.

To obtain T ′, for every v ∈ V , we replace the star Hv with a spider H ′v obtained via the star
to spider transformation. Any two vertices of any star remain connected after the transformation,
thus T ′ is connected. Additionally, the star to spider transformation preserves the number of edges,
therefore T ′ is a tree.

Let IXT be the (X, dX) to (X, dT ) identity map, let IXT ′ be the (X, dX) to (X, dT ′) identity
map, and let ITT ′ be the (X, dT ) to (X, dT ′) identity map. We bound the distortion of IXT ′ .
First, by the definition of T ′, the map IXT ′ has contraction one. To bound its expansion, note
IXT ′ = IXT ◦ ITT ′ . Since IXT has contraction one, its expansion is δ. Thus, it remains to show
that the expansion of ITT ′ is bounded. By Lemma 2.2, it suffices to bound the expansion of every
edge of T by (1 + ε). Let (x, y) ∈ E. Without loss of generality assume y is the parent of x, thus
(x, y) ∈ Hy. By, Lemma 5.1, the x-to-y path in H ′y has length at most (1 + 2

α−1)w(x, y). Thus to
obtain the (1 + ε) upper bound we only need to set

2

α− 1
= ε⇒ α =

2

ε
+ 1.

Next, we bound the degree of each vertex v in T ′, by bounding the number of vertices in each
layer of Hv (using Lemma 5.1-(1)). Let x and y be any two vertices at layer i of Hv, that is
αi ≤ dX(v, x) < αi+1, and αi ≤ dX(v, y) < αi+1. In particular, dT (x, y) ≥ 2αi, and since IXT has
expansion at most δ, dX(x, y) ≥ 2αi/δ. Therefore, by Lemma 2.1, the number of points in layer i
is at most, (

2αi+1

2αi/δ

)λ
= (αδ)λ .

Overall, each vertex is the center of at most one star and the leaf of at most one star. After
the transformation the center of each spider has degree at most 2 max(|Li|) ≤ 2(αδ)λ, and each
non-center has degree at most 2. Hence, the degree of any vertex of T ′ is at most

2(αδ)λ + 2 = 2(2δ/ε+ δ)λ + 2 = (O(δ/ε))λ.

For a tree T = (V,E,w), by setting X = V and dX = dT we obtain the following useful corollary.

Corollary 5.3. Let T = (V,E,w) be a tree of doubling dimension λ. For any 0 < ε < 1, there is
a tree T ′ = (X,E′, w′) with maximum degree (O(1/ε))λ such that the identity map from (V, dT ) to
(V, dT ′) has distortion at most (1 + ε).

6 Tree spanners

In this section, we consider the closely related problem of finding tree spanners with minimum
stretch. Lets start by considering a generalization of both the low-distortion trees and low-stretch
tree spanners problems.
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Let (X, dX) be a finite metric space. Similar to the low-distortion embedding problem, we would
like to embed X into a tree T = (X,ET , wT ). However, we have a set of constraints on possible
edges and edge weights of T . Specifically, we have a constraint function h : X × X → 2R

+
,

which specifies the set of permitted weights for every pair of vertices x, y ∈ X if we choose to
include (x, y) in ET . In particular, an edge (x, y) is banned if h(x, y) = ∅. A tree is a permitted
tree if all its edge weights are permitted. Given (X, dX) and h, the constrained embedding
problem asks for the minimum distortion embedding of X into any permitted tree. Note that the
minimum stretch tree spanner problem for a graph G = (X,EG, wG) is equivalent to the constrained
embedding problem for (X, dG) and h, where h(x, y) = {wG(x, y)} if (x, y) ∈ EG, and h(x, y) = ∅,
otherwise. Moreover, the minimum distortion embedding problem is equivalent to the constrained
embedding problem for (X, dX) and h, where h(x, y) = R+ for all x, y ∈ X.

We modify the algorithm of Lemma 4.12 to solve the constrained embedding problem. Let
δopt(X, deg, h) denote the minimum distortion of any embedding of (X, dX) into a tree with
vertex set X, maximum degree at most deg, and which is permitted with respect to h.

One issue is that our algorithm works with a discrete step size σ, while h might allow edge
weights that are not integer multiples of σ. To resolve this issue, in a preprocessing step we
change h to h′, where h′(x, y) = {da/σe · σ | a ∈ h(x, y)}. The proof of Lemma 4.1 implies that
δopt(X, deg, h

′) ≤ (1 + σ)δopt(X, deg, h). Our algorithm then solves the problem for X, deg, and h′

to find a tree T ′ = (X,ET ′ , wT ′) that is permitted with respect to h′. To obtain a permitted tree
with respect to h in a postprocessing step we modify wT ′ as follows. For each (x, y) ∈ ET ′ , we set
wT (x, y) to the largest permitted value (with respect to h) that is at most wT ′(x, y). Let δ′ and δ
be distortions of identity maps from (X, dX) to (X, dT ′) and from (X, dX) to (X, dT ), respectively.
Applying Lemma 4.1 in the reverse direction implies that δ ≤ (1 +σ) · δ′. Hence, the preprocessing
and postprocessing introduce a factor of at most (1 + σ)2 in the final distortion.

Now, let σ > 0, and let h′ be the refined constraint function with step size σ. Also, let δ′opt =
δopt(X, deg, h

′). A modification of the argument of Lemma 4.6 shows the existence of a consistent
set of views with parameters (deg, σ, c, δ′opt) over a permitted tree T ′. Given any consistent set of
views over any tree Lemma 4.11 guarantees distortion at most (1−14/(c−1))−1 ·(1+20/(c−1))δ′opt
for the identity map to that tree.

We slightly modify the dynamic programming of Lemma 4.12 to compute a permitted tree with
a consistent set of views over it. Specifically, whenever we check consistency between two views Vx
and Vy over an edge (x, y), we make sure that |Adx −Ady| ∈ h(x, y), that is |Adx −Ady| is a permitted
weight for (x, y). The rest of the algorithm remains intact. Together with the preprocessing and
the postprcessing step, we obtain an algorithm that is guaranteed to return a tree with distortion
at most (

1− 14

c− 1

)−1

·
(

1 +
20

c− 1

)
· δ′opt ≤

(
1 +

608

c− 1

)
· (1 + σ)2 · δopt.

So by setting c = 7× 608/ε + 1 and σ = ε/7, we are guaranteed that the distortion of our output
is at most (1 + ε)δopt, and the following theorem follows.

Lemma 6.1. Let X be an n-point metric space, with doubling dimension λ, and spread ∆. Also,
let h : X ×X → 2R

+
specify permitted edge weights. For any δ > 0, ε > 0, and deg > 0 there is a

n2 ·∆logδ(deg/ε)(O(δ2/ε))λ

time algorithm to compute a (1+ε)δ distortion embedding of X into a permitted tree T (with respect
to h) of maximum degree deg if δ ≥ δopt(X, deg, h). If δ < δopt(X, deg, h), this algorithm either
computes an embedding of distortion (1 + ε)δ or (correctly) decides that δ < δopt(X, deg, h).
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The general version of Theorem 4.13 follows, by the exact same proof.

Theorem 6.2. Let X be an n-point metric space, with doubling dimension λ and spread ∆. Also,
let h : X × X → 2R

+
specify permitted edge weights. For any 0 < ε < 1 and deg > 1, where

δopt = δopt(X, deg, h), there is a

n2 ·
(

∆

ε

)log(deg/ε)·(1/ε)·(O(δ2opt/ε))
λ

time algorithm to compute a (1 + ε)δopt distortion embedding of X into a permitted tree T of
maximum degree deg.

Now, we are ready to prove our spanner results using Thorem 6.2.

Proof of Theorem 1.3. Let δopt = str(X) be the minimum possible stretch of any spanning tree
of X, and let str(X, deg) denote the minimum possible stretch of any spanning tree of X with
maximum degree at most deg. Let h : X × X → 2R

+
be defined as follows. For each x, y ∈ X,

set h(x, y) = {dX(x, y)}. Note that δopt(X, deg, h) = str(X, deg) and let δ denote this value. The
algorithm of Theorem 6.2 can find a permitted tree with respect to h and an embedding of distortion
at most (1 + ε/3) · δ in time

n2 ·
(

∆

ε

)log(deg/ε)·(1/ε)·(O(δ2/ε))λ

,

for any ε/3 and deg. On the other hand, Lemma 5.2 implies that there exists deg = (O(1/ε))λ such
that δ = str(X,deg) ≤ (1 + ε/3) · str(X) = δopt. Thus, a (1 + ε) approximation of the minimum
stretch tree can be computed in time

n2 ·
(

∆

ε

)log(1/ε)·(1/ε)·(O(δ2opt/ε))
λ

= n2 ·
(

∆

ε

)(O(δopt/ε))2λ+1

,

where the last equality slightly weakens our run time bound in order to simplify the expression.

Proof of Theorem 1.4. Let h : X × X → 2R
+

be defined as follows. For each x, y ∈ X, set
h(x, y) = {w(x, y)} if (x, y) ∈ E, and set h(x, y) = ∅ otherwise. For any 0 < ε < 1, Theorem 6.2
finds a permitted embedding into a tree T of distortion at most (1 + ε)δopt((X, dG), deg, h). The
constraint function ensures that T is a spanning tree of G. Also, as h allows all spanning trees of
G and no other tree, we have δopt((X, dG), deg, h) is equal to the minimum stretch of all spanning
trees. Note that the running time follows from that of Theorem 6.2 by slightly weakening (and
simplifying) the exponent by writing log(deg/ε) · (1/ε) · (O(δ2

opt/ε))
λ = log(deg)(O(δopt/ε))

2λ+1.
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[LW08] Christian Liebchen and Gregor Wünsch. The zoo of tree spanner problems. Discrete
Appl. Math., 156(5):569–587, March 2008.
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