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Introduction

The simulation of interaction of particles with matter is a challenging
problem.

The transport equation is a basis for mathematical models of this physical
phenomenon.

Transport problems are difficult to solve
— high dimensionality,
— an integro-differential equation,

— coefficients depend on the state of matter «—— the state of matter is
affected by fluxes of particles.

Applications:

— reactor physics,

— astrophysics (stars),

— plasma physics (laser fusion),

— atmospheric sciences.
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Introduction

There exists a family of efficient nonlinear methods for solving the trans-
port equation:

Quasidiffusion method (V. Gol'din, 1964),

Nonlinear Diffusion Acceleration (K. Smith, 2002),

Flux methods (T. Germogenova, V. Gol'din, 1969).

These methods are defined by a system of nonlinearly coupled high-order
and low-order problems that is equivalent to the original linear transport
problem.

The Nonlinear Projective Iteration (NPI) methods possess certain advan-
tages for their use in multiphysics applications.

The low-order equations of NPI methods can be used to formulate ap-
proximate particle transport models.

These low-order equations can also be utilized as a basis for development
of hybrid Monte Carlo computational methods.

The NPI methods are distinct from each other by the definition of the
low-order equations which gives rise to differences in features of these
methods.
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Introduction

e QOutline
— A Tutorial on nonlinear methods for solving the transport equation

— The Quasidiffusion (QD) method for transport problems in 2D Carte-
Sian geometry on grids composed of arbitrary quadrilaterals

— Nonlinear Weighted Flux (NWF) methods for particle transport prob-
lems in 2D Cartesian geometry on orthogonal grid

e T his work was performed in collaboration with my Ph.D. students at
NCSU

— William A. Wieselquist (to graduate in 2008 — Paul Scherrer Insti-
tute, Switzerland)

— Loren Roberts (graduated in 2008 — Baker Hughes Inc.)
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Transport Problem

e Let us consider the following single-group slab geometry transport problem
with isotropic scattering and source:

1
0 1
b ) + i) = 5 | Eue) [l ) + Q@) |

]

—l<p=<l, O0Zz<L,
1 1

6@ = [ wdn, I@) = [ i mda

-1 —1

with reflective left boundary

and vacuum boundary condition on the right
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Low-Order Equations

e [ he transport equation is integrated over —1 < u < 1 with weights 1 and u

Yo s -6 =0,
dx

1
d
— /,&pdu +>,J=0,

dx
1

where
1

1
¢(x) = [ Y(z,p)dp, J(x) = [ pp(x, p)dp.
/ /

-1

e What should we do with the extra moment?

1
2d 2
popdp =

—1
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Approximate Closure: Diffusion Theory

e Diffusion theory (approximation)

V() = 5 (6() + 3pI (@),

1

1
/ Wdp = Zo(x).

-1

e P, equations
dJ
—+ (-5 =Q,
dx

1de
iy =0,
3de 2

e Diffusion equation

d 1 do
dx 32 ;dx

+ (- =@,
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Approximate Closure: Variable Eddington Factor Method

1

[ 12du F@yota)
-1
e Minerbo closure (approximation) @)
Y(z,p) = a(z)e” Flz) =1 722 o)

e Kershaw closure (approximation)

2
=3 (+2(53))

e Levermore-Pomraning closure (approximation)

J 1 J
Fo) = TN iz, coth(z) - L =Vl
() Z ¢
e Pi-like nonlinear Iow—ord?{]equations

—+ (- Z5)p=Q,
dx

LFO+TI=0, F=F0.)
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Quasidiffusion (QD) Method: Exact Closure

e The Quasidiffusion method (exact)

. ]
1 f wrpdp | 1
-1
[ wvdu= | P [ vdu= E@o).
1 [ wdp |1
L -1 A
e T he quasidiffusion factor.
1
| w2ddp
E(z) = = =< i® >
J vdu

-1
e Quasidiffusion low-order equations

Y z—t)=0q,
dx

@—I—Zt.fzo, E = E[y].
dx
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System of Equations of the Quasidiffusion (QD) Method

e The transport (high-order) equation

0 1
(@, p) + Zep(a, p) = E(qub(fc) + Q).
e QD (variable Eddington) factors

1 0

[ w2 (e, p)dp [ wp(L, p)dp

-1 —1
1 ’ C’L —

E(x) = 5 :
_fl Y(z, p)dp _fl Y (L, p)dp

e the low-order QD equations

%J(az) +(Z - Z)e(2) = Q,

- <E<x>¢<w>) +51J(2) = 0.

J(0) =0,
J(L) = Cro(L).
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QD Method: Iteration Process

e High-order problem (transport sweep)

o 1
po TR 4 Zp TV = S (361 4+ Q)

e Calculation of QD factors

0
fl 1122 (1) 1) dp f Y2 (L W) dp
EG+Y2) () = =L : oo

) L —
[2 962 (2, p)dp

- .
J WETY2(L, p)dp
-1

e Low-order QD problem

d
D 4 (5, - E)eH =@,
X

di (BCH/D66+D) 4 3 g 6+ =0
T

JETD(0) =0,
J(s—l—l)(L) — C£8+1/2)¢(s+1)(L) .
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Nonlinear Diffusion Acceleration (NDA)

(Kord Smith)

e High-order problem (transport sweep)
0, 1
pop TR 4 TV = (3.6 4+ Q)

e Calculation of D(+1/2)

1 1
TG+ () = / wpSTYD (¢ )dy, T (g) = / YT (2, pydp
-1 -1

et/ — L (e 1 doCTUEN
H(s+1/2) 3%, o

e Low-order NDA problem

d
I 4 (5, - T = Q,
1 d¢GtD) _
+ DG/ p6+1) 4 g6+ = o |
3>, dz
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QD Method for the Multidimensional Transport Equation

e The transport (high-order) equation
1

—o (PP + 50l

& - VR (7 Q) 4 oy () p* D (7 &)
e The QD (Eddington) tensor
= E E
E = TT Ty :
( Ly Eyy )
Eg;—l-l/Q)(F) = /QaQﬁ¢(k+1/2)(ﬁQ)d§2//¢(k+1/2)(;7§2)d§27 o, B=zxy,
4n 4r

E,s(7) = average value of Q2,%3.

e The low-order QD (LOQD) equations
V- JED(R) + 0 (7R) ¢ (7) = q(7)

R = - L. (B e

O't(’F)
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Discretization of the LOQD Equations

e The unknowns: ¢;, ¢i,, and J;, = Jiu, - Miw,

e [ he balance equation in ¢th cell

Z Jiw - Aiw 4+ 04:0iVi = q;Vi, where w — cell face.
w

e Jim Morel (2002) proposed a cell-centered discretization for the diffusion
equation on meshes of arbitrary polyhedrons.

- 1 =
{v¢}zw — (¢zw - sz)&zw + V Z(Qbiw’)ﬁiww’ ’

where a;, and (.. are based on geometry.

e \We apply Morel's method

- 1
Jiw:_

{5 -@0),

- = . OE 1 OE .y - OFEqgzy OEyy¢
{V . (Eqb)}iw - ({ Ox }iw T { dy }zw> T ({ oz }iw T { dy }zw) '
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Discretization of the LOQD Equations

e Conditions at interfaces between cells

Js1,
; O3,
1R
1 ur
Jor,
bor 2

e Strong current and weak scalar flux continuity conditions

Jr = —Jor
Jr = —J3L
PrRAR = ¢orAor + P3LA3L
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Analytic Test Problem for the LOQD Equations

e0<z<1 0<y<1l o,=1, 0,=0.5.

e Analytic solution

1\ 1\ 2
o(x,y) =5 —tanh | 100 (w—a) + 100 (y—§>

e The QD tensor (E,s(x,y)) is given in analytic form

Ex:y(xa y)
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Results on 3-Level Grids

e Relative error in the cell-average scalar flux

e Grid 1: 40 cells
1.0E-01 1.0E-01
1 1
1.0E-02 1.0E-02
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Results on 3-Level Grids

e Relative error in the cell-average scalar flux

e Grid 2: 160 cells

T T T T T 1.0E-01 T T T T T 1.0E-01
1= . 1= .
1.0E-02 1.0E-02
0.75 - 0.75 -
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orthogonal grid randomized (20%) grid
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Results on 3-Level Grids

e Relative error in the cell-average scalar flux
e Grid 3: 640 cells
T T T T T 1.0E-01 T T T T T 1.0E-01
1 F - 1+ 4
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0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
x (cm) X {cm)
orthogonal grid randomized (20%) grid
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Results on 3-Level Grids

e Relative error in the cell-average scalar flux
e Grid 4: 2560 cells
T T T T T — 1.0E-01 T T T T T — 1.0E-01
1+ - 1E .
4 1.0E-02 4 1.0E-02
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Transport Test Problem

_________________F’

vacuurr

Jcm
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3_Em
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Numerical Results

Results of Single Level Grids

Orthogonal Grid Randomized Grid Relative Difference
F L PR F oL PR F L PR
8 x8 2.998e-2 | 1.1217 | 0.1467 | 2.872e-2 | 1.1263 | 0.1435 | 4.2e-2 | -4.0e-3 | 2.2e-2
16 x16 | 3.141e-2 | 1.1021 | 0.1564 | 3.124e-2 | 1.1045 | 0.1543 | 5.4e-3 | -2.2e-3 | 1.4e-2
32 x32 | 3.194e-2 | 1.0975 | 0.1589 | 3.205e-2 | 1.0977 | 0.1581 | -3.4e-3 | -2.4e-4 | 5.0e-3
64 x64 | 3.209e-2 | 1.0965 | 0.1593 | 3.216e-2 | 1.0964 | 0.1592 | -2.2e-3 1.2e-4 | 8.4e-4
Numerically Estimated Spatial Order of Convergence
Orthogonal Grid Randomized Grid
F oL PR F oL PR
single-level 1.82 | 232 | 266 | 2.88 | 2.35 | 1.86
two-level (with refinement on the left) 1.50 | 1.95 | 1.94 | 2.07 | 1.563 | 1.42
two-level (with refinement on the right) | 1.40 | 2.23 | 2.35 | 1.29 | 1.86 | 1.89
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Nonlinear Weighted Flux (NWF) Methods

e The transport (high-order) equation

G (D) + (P D) = 2 ou (D) + 54

e [ he factors

Gn(7) = T / w(S, ) (7, 2)d2 / / (7, )dY, Ty = o

Wm

FO(F) = T, / |0 |w (2, 2y) (7, 2)d$2 / / (7, 2)dS2,

e The low-order NWF equations ¢,,(7) = | (7, €)d2, m=1,...,4

0
(FYpm) + 01Gmem = —(asczb + ),

E(qubm) + Vy 8

" ox

4
$=> bm.,
m=1
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Asymptotic Diffusion Limit of the Transport Eqgation

e \We define a small parameter e, scaled cross sections and source:

—~

Ot —~ -
ot — —, Oq — &€0q, q—¢&q,
e

e Consider that € — 0.

e \We now assume that the solution can be expanded in power series of ¢

) = i "yl
n=0

e T he leading-order solutio of the transport the equation meets to the diffu-
sion equation

o 1 oyl 5 1 oylo

_ o 0] — 4
Ox30; Ox Oy 3o0; Oy T Ia¥ d
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Asymptotic Diffusion Limit of the Low-Order NWF
Equations

e \We consider various weights
— w(2;,9Q,) =1
— w(Su, $2y) = [ + [$2y|
— w(82,€2y) = 1+ [Q2] + [€2,]
— w(82,82y) = 1 4 B(|Q%] + [€2y])

Values of the diffusion coefficients (D) for specific NWF methods

Weight 1 |25 |4 €2| 14-{€2,[4[€2,| 14 B(192:] + [€24])
D 1 (my; ~ _1 (4+5w>2 1. 1 1
40, 3r / o, 3.360; 127 o, 3.660, 30,
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Numerical Results

e Test problem
— A unit square domain
— atZ%, 0q =€, and g =€
— €=1072,10"3, 1074, and 107°
— Boundary conditions are vacuum.
— A uniform spatial mesh consists of 19x19 equal cells.

— The compatible product quadruple-range quadrature set uses 3 polar
and 3 azimuthal angles per octant.

Relative errors of the cell-average scalar flux in the cell located at the center

Weight
¢ 1 [ Q[ | TF %[ [ T+ BTS2+ <2,
1072 | 2.56E-1 | 1.01E-1 1.75E-1 7.13E-3
1073 | 2.68E-1 | 9.82E-2 1.79E-1 -2.18E-3
1074 | 2.69E-1 | 9.86E-2 1.80E-1 -1.99E-3
107 | 2.69E-1 | 9.86E-2 1.80E-1 -1.97E-3

anistratov@ncsu.edu
26



Asymptotic Boundary Condition

e [ here exist a boundary layer with the width of order of «.

e T he scalar flux at the boundary of the diffusive domain

SO(X,y) = 2 / Wi (X, y, 9SS,
11-2<0

e It is possible to improve the performance of the NWF method by using

w(Qx7 Qy) =1+ >\(|Qx‘ + ‘QyD + "3|Qwa|

Relative errors of the asymptotic boundary conditions for the NWF methods

BLD Transport Weight
7 (mfp) Method 1 €24 €24 | 14+€2, 12, | wg W) 4
0.0 0.033 % 0.033% 0.033% 0.033% 0.033% | -0.059%
0.2 -0.112% -3.451% -1.456% -2.410% -0.249% | -0.199%
1.0 -0.304% -8.035% -4.030% -5.945% -1.607% 0.697%
2.0 -0.423% -10.871% -6.557% -8.620% -3.948% 1.36%
4.0 -0.568% -14.339% -10.850% -12.518% -8.739% 1.25%
6.0 -0.641% -16.089% -13.520% -14.748% -11.97% 0.755%
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Problem with an Unresolved Boundary Layer

A domain 0 < z,y < 11 with two subregions:
1. 0<x<1,0,=2,0:=0,qg=0, Ax=0.1, and Ay =1,
2. 1<zx<11, 04 =0,=100, g =0, and Az = Ay = 1.

There is an isotropic incoming angular flux with magnitude % on the left
boundary

Other boundary condition are vacuum.

This problem enables one to test the ability of a method to reproduce
an accurate diffusion solution in the interior of the diffusive region with
the spatially unresolved boundary layer.
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Problem with an Unresolved Boundary Layer

0.14
I L Fine Mesh QD Solution
T * * w=|QX|+|Qy|
i 4> A w=1+Q |+|Q |
010 A w=1+(|Q +|Q)))
[ % 4 * w=lw(Q+o )+la |
0.08 |- &
o A
2 0.06 |
= |
0.04 -
0.02 -
000 i 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
0 1 2 3 4 5 6 7 8 9 10 11
X
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Conclusions

e \We have developed a new method for solving the LOQD equations on
arbitrary quadrilateral and AMR-like grids

— The resulting QD method for solving transport problems demon-
strated good performance on both randomized and AMR-like grids.

— Observe second order spatial convergence in numerical tests
e \We defined a new parameterized family of nonlinear flux methods for
solving the 2D transport equation.

— The asymptotic diffusion analysis enabled us to find a particular
method of this family the solution of which satisfies a good approxi-
mation of the diffusion equation in diffusive regions.

— AS a result, we developed a 2D flux method with an important feature
for solving transport problems with optically thick regions.

— Note that it is possible to formulate a linear version of the proposed
methods.
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