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Outline

Multiphysics Computational Nuclear Engineering
Operator Splitting and Analysis ∗

Jacobian-Free Newton-Krylov (JFNK) Methods∗

Physics-based Preconditioning of JFNK∗

MOOSE, Multiphysics Object-Oriented Software Environment
BISON, Fuel Performance Simulation
PRONGHORN, Pebble-bed Gas Reactor Simulation

∗ Each topic a talk of its own



Some Requirements for Predictive Simulation

Proper Physics Model / Equation Set

Accurate spatial discretization / adequate grid refinement (3-D)

High end computing platforms and parallel, scalable, algorithms.

Accurate time integration (or coupling) for multiphysics systems
This area has received little attention.
Verification of temporal integration (confidence)
We must understand this area when we are taking 105 − 106 time
steps.
”Code coupling” or first-order operator splitting the norm



Multiphysics Computational Nuclear Engineering:
Two Examples

Fuel Performance
Nonlinear Mechanics, Contact, Crack models
Thermal transport
Fission gas transport
Species transport

Reactor design and transient analysis
Neutronics
Heat conduction
Fluid flow
Species transport and chemistry
Structural response



Linearization and Time Splitting (code coupling):
The Standard Approach

Model Problem: A and B represent two nonlinear processes

dT
dt

= A(T )T + B(T )T (1)

Linearization
T n+1 − T n

∆t
= A(T n)T n+1 + B(T n)T n+1 (2)

Time Splitting (first-order), Same as ”code coupling”.

T ∗ − T n

∆t
= A(T n)T ∗,

T n+1 − T ∗

∆t
= B(T n)T n+1 (3)

Both are sources of time integration error



Modified Equation Analysis (1 of 2)

Modified Equation Analysis (MEA) example (Tt ≡ dT
dt )

Tt = T ,
T n+1 − T n

∆t
= T n+1 . (4)

Taylor series used to eliminate T n

T n = T n+1 −∆tT n+1
t +

∆t2

2
T n+1

tt − ∆t3

6
T n+1

ttt + O(∆t4)

Original ODE on left side “modified” by nonzero RHS.

[Tt − T ] =
∆t
2

Ttt +O(∆t2), (5)



Modified Equation Analysis (2 of 2)

History:
Nonlinear stability, Hirt, JCP, vol. 2, pp. 339-355 (1968)

Accuracy, Warming and Hyett, JCP, vol. 14, pp. 159-179 (1974 )

We will use semi-discrete (time) MEA to begin to analyze
numerical errors which arise due to linearization and time
splitting.
D.A. Knoll, et. al., ”On balanced approximations for the time
integration of multiple time scale systems”, J. Comput. Phys., vol
185, pp. 583-611 (2003)



Splitting Linear Reaction - Diffusion (1 of 5)

Model Linear Equation:

∂T
∂t
− D

∂2T
∂x2 = αT , Tx=0 = TL, Tx=1 = TR

Dynamical Time Scale

1
τdyn

≡ −(
1
T

dT
dt

) = −D
T

∂2T
∂x2 − α ≈ 1

τdif
+

1
τreac

,

Normal Mode Time Scales

τdif ≡
L2

D
; τreac ≡ −

1
α

,

and L is taken as the length of the domain (or solution structure).



Splitting Linear Reaction - Diffusion (2 of 5)

First order, unsplit:

T n+1 − T n

∆t
− D

∂2T n+1

∂x2 = αT n+1

T n+1
x=0 = TL, T n+1

x=1 = TR

First order split (R-D):

T ∗ − T n

∆t
= αT ∗,

T n+1 − T ∗

∆t
− D

∂2T n+1

∂2x
= 0

T n+1
x=0 = TL, T n+1

x=1 = TR

First order split (D-R):

T ∗ − T n

∆t
− D

∂2T ∗

∂2x
= 0,

T n+1 − T ∗

∆t
= αT n+1

T ∗
x=0 = TL, T ∗

x=1 = TR



Splitting Linear Reaction - Diffusion (3 of 5)

T (t = 0) = 0, D = 1, α = −20, TL = 1, TR = 0,

∆t = 0.01, α∆t = −0.2
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Splitting Linear Reaction - Diffusion (4 of 5)

MEA on First order, unsplit, Yields:

[Tt − D
∂2T
∂x2 − αT ] =

∆t
2

Ttt + O(∆t2)

MEA on R-D splitting Yields:

[Tt − D
∂2T
∂x2 − αT ] =

∆t
2

Ttt + α∆tD
∂2T
∂x2 + O(∆t2)

MEA on D-R splitting Yields:

[Tt − D
∂2T
∂x2 − αT ] =

∆t
2

Ttt + α∆tD
∂2T
∂x2 + O(∆t2)

Tx=0 = TL/(1− α∆t), Tx=1 = TR/(1− α∆t)

Splitting errors scale with α∆t , normal mode.



Splitting Linear Reaction - Diffusion (5 of 5)

Use D∗ in R-D splitting and equate the resulting modified
equation to the modified equation from first order unsplit to get:

D∗ =
D

1.0− α∆t
What is the result of using D∗ in R-D split simulation ? and What
is the result of using D∗ and modified BCs in D-R split simulation
?
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Linearization and Time Splitting:
Some Conclusions

Can appear to be inaccurate physics model under validation
process (Dangerous !)
Boundary conditions can be impacted
Time step constraints for accuracy related to normal modes
Second-order splitting is possible, but continues to be prone to
numerical stability and accuracy challenges.

Numerical Stability Issues
D.L Ropp and J.N. Shadid, J. Comput. Phys., vol. 203, pp. 449-466
(2005)
Asymptotic Range / Time Step Size
R.M., Rauenzahn, V.A. Mousseau, D.A. Knoll, Comput. Phys.
Comm. vol. 172, pp. 109-118 (2005)
V.A. Mousseau, D.A. Knoll, Nuc. Sci. Eng., vol. 154, pp. 174-189
(2006)



Jacobian-Free Newton-Krylov Methods:
A Modern Option

Pros:
No splitting or linearization error

A clean way to include a variety of nonlinear phenomena

Can implement a variety of higher-order time discretizations

Opens the door for Sensitivity analysis, data assimilation ....

Cons:
Solving Nonlinear problem with iteration

Solving full dimensional system implicitly

MUST produce effective preconditioner



Newton’s Method : Equations

Newton’s method solves a system of nonlinear equations of the form,

F(x) = 0,

by a sequence of steps defined by (each a linear problem)

Jk(xk )δxk = −F(xk ),

where,

Ji,j(xk ) =
∂Fi

∂xk
j
,

and,
xk+1 = xk + δxk .

This is continued until

‖F(xk )‖ < toln‖F(x0)‖

where toln is an input nonlinear tolerance.



Jacobian-Free Newton-Krylov: Key Point

Krylov linear iterative methods (CG, GMRES ...) only need the action
of the Jacobian matrix to construct the mth iteration of δxk

δxk
m = a0r0 + a1Jr0 + a2J2r0 + . . . + amJmr0

where
r0 = Jkδxk

0 + F(xk )

and
δxk

0 = −P−1F(xk )

where P−1 is the preconditioner.
The action of the Jacobian Matrix can be approximated with a single
function evaluation

Jv ≈ F(x + εv)− F(x)

ε



Jacobian-Free Newton-Krylov: Key Refs

Standard “PDE motivated” references:
P. N. Brown and Y. Saad, SIAM J. Sci. Stat. Comput., 11, pp.
450-481 (1990)
Tony F. Chan and Kenneth R. Jackson, SIAM J. Sci. Stat.
Comput., 5, pp. 533-542 (1984)
Also see the monograph,
C. T. Kelley, Iterative Methods for Linear and Nonlinear
Equations, SIAM, Philadelphia, 1995
Recent JFNK review article from the application perspective
D.A. Knoll and D.E. Keyes, Jacobian-free Newton-Krylov
methods: a survey of approaches and applications, J. Comput.
Phys., 193, pp. 357-397 (2004)



Preconditioning JFNK (1 of 2)

Using right preconditioning one solves

(JP−1)(Pδx) = −F(x). (6)
P symbolically represents the preconditioning matrix (or process)
and P−1 the inverse of preconditioning matrix.
Actually realized through a two-step process. First solve

(JP−1)w = −F(x), (7)
for w with the Krylov method. Then solve for δx

δx = P−1w, (8)
Operationally only require the action of P−1 on a vector.



Preconditioning JFNK (2 of 2)

Right-preconditioned matrix-free version is:

JP−1v ≈ [F(x + εP−1v)− F(x)] / ε. (9)
Required in step 1 of previous slide
Actually done in two steps (v is given):

1 Preconditioning: Solve (approximately) for y in y = P−1v .
2 Perform matrix-free product Jy ≈ [F(x + εy)− F(x)] / ε.

Only the matrix elements required for the action of P−1 are
formed.



Physics-based Preconditioning: Motivation

What is an effective choice for P−1 ?

There exist numerous, legacy algorithms to solve multiphysics
systems.
Most are based on linearization and time splitting
Typically developed with some insight into the time scales or
physical behavior of the problem.
As a benefit of this insight, a reduced implicit system, or a
sequence of segregated implicit systems may be solved in place
of the fully coupled system.
We have shown that these legacy algorithms may make excellent
preconditioners for JFNK.



Physics-based Preconditioning: Examples

Nonequilibrium Radiation Diffusion (Applied Astrophysics)
V.A. Mousseau, D. A. Knoll and W.J. Rider, J. Comput. Phys.,
160, pp. 743-765 (2000)
Magnetohydrodynamics (Fusion and Space Weather)
L. Chacon, D.A. Knoll, and J.M. Finn, J. Comput. Phys., 178, pp.
15-36 (2002)
Low speed flow (Hurricane Simulation)
J.M. Reisner, V.A. Mousseau, A. Wyszogrodzki and D.A. Knoll,
Mon. Wea. Rev., 133, pp. 1003-1022 (2005)
Solidifying flow (Metal Casting)
K.J. Evans, D. A. Knoll and M.A. Pernice, J. Comput. Phys., 219,
pp. 404-417 (2006)



Dual use of the method

Not JFNK vs Linearization / Time Splitting
Linearization / time splitting can be used as solver or
preconditioner within a single code.
Our view: Combination of JFNK and linearization plus time
splitting is the most dependable route to time accurate (2nd

order), stable, and efficient methods.



Multiphysics Framework Requirements

1D, 2D and 3D with same code

Massively Parallel

Fully Coupled

Fully Implicit

JFNK Finite Element Based

Flexible Physics Interface

Ability to rapidly develop new
capabilities

Flexible Materials Database

Error Estimation and Adaptivity

Portable

MOOSE: Multiphysics Object Oriented Simulation Environment
– Meets all of the above requirements and more.



Parallel Algorithms

First and second order Lagrange finite element discretization.
Residual is calculated in parallel.

Off processor contributions assembled in parallel.
Element based domain decomposition.

Parallel solver packages used for JFNK and elliptic system
preconditioning.

PETSc, ANL

Trilinos, SNL



MOOSE – Multiphysics Object Oriented Simulation Envi-
ronment

Multiphysics framework for complex
applications development

Engineering application environment, not

“research code”
Mesh generation, adaptation, and sensitivity
analysis are tightly integrated to form a robust
engineering application

Plug-and-play modules
Simplified coupling

MOOSE Physics Interface conceals
framework complexity

Utilizes state-of-the-art linear and non-linear

solvers
Robust solvers are key for “ease of use”



Advanced Capabilities

Parallel Decomposition

Adaptivity

Transient Analysis


temp_movie.swf
Media File (application/x-shockwave-flash)



Future Work

Advanced physics based preconditioning.
De-coupled elliptic solves using multi-grid.

Adjoint capability.
Enhances sensitivity analysis.
Enables goal oriented error estimation and adaptivity.

Finite volume based discrete operator options
Linking with other libraries.

Explore other solver and preconditioning packages.
Utilize material databases such as MATPRO.

Code optimization.



BISON: Motivation and Target Application

Motivation
Develop a predictive capability analysis for reactor fuel
performance
Efficiently and accurately predict extended burn-up scenarios

Target Application
3-D, Full pin, extended burn-up cladding integrity
Comprehensive pellet–cladding interaction capability

Capabilities
3-D transient thermomechanics

Development began in June 2008 !



BISON: Nuclear Fuel Issues



BISON: Initial Equation Set (1 of 2)

Nonlinear thermal conduction

ρCpTt +∇ · k∇T −Q = 0

with appropriate boundary conditions

Nonlinear oxygen non-stoichiometry

st +∇ · (D∇s +
sQ∗

FRT 2∇T ) = 0

with appropriate boundary conditions



BISON: Initial Equation Set (2 of 2)

Linear elasticity
ATDAu + f = 0,

with

A =


∂x 0 0
0 ∂y 0
0 0 ∂z
∂y ∂x 0
0 ∂z ∂y
∂z 0 ∂x

 , D = c1


1 c2 c2 0 0 0
c2 1 c2 0 0 0
c2 c2 1 0 0 0
0 0 0 c3 0 0
0 0 0 0 c3 0
0 0 0 0 0 c3


and c1 = E(1−ν)

(1+ν)(1−ν) , c2 = ν
(1−ν) , c3 = (1−2ν)

2(1−ν)

with appropriate boundary conditions



BISON: Example Results

Coupled transient thermal–solid
mechanics


crack_movie.swf
Media File (application/x-shockwave-flash)



3D Transient Oxygen Diffusion Results

Transient, fully-coupled thermomechanics and oxygen diffusion

Inset shows 3D transient displacement X 100, colored by
temperature. X-Y plots show radial displacement, temperature,
and oxygen hyperstoichiometry


transient_oxy_diff2.mpg
Media File (video/mpeg)



BISON: Near term plan

Fission gas model, gap heat transfer, nonlinear mechanics, Dec
2008
FRAPCON / FRAPTRAN test suite, March 2009
3-D Pellet-Cladding Mechanical Interaction, June 2009
Benchmark with ABAQUS pellet-gap-clad model, July 2009
3-D multiphysics transient simulation in parallel, initial study of
crack impacts on cladding deformation, Dec 2009 (1.5 years into
project)



PRONGHORN: Motivation and Target Application

Motivation
Base thermal solver for 3-D steady-state and transient pebble bed
gas-cooled reactor. Many researches rely on standard codes (e.g.
THERMIX) and use as a black box. (THERMIX is only 2D)

Coupled thermal-neutronics solver

Target Applications
Use to study 3-D transient phenomena

study multiphysics boundary layer with extended physical model

Development began in mid-September 2008 !



PRONGHORN: Initial Equation Set (1 of 2)

Steady-state Thermal-Fluid Model (Darcy-like flow model)
(solving for P, ρ~u, Tf , Ts, P = ρRTf )
Momentum (W is porous media friction model)

∇P − ερ~g + Wρ~u = 0

Continuity (∇ · ρ~u = 0)

−∇ · 1
W
∇P +∇ · ερ~g

W
= 0

Fluid Energy

∇ · (ρcpf uTf )−∇ · εκf∇Tf + α(Tf − Ts) = 0

Solid Energy

−∇ · (1− ε)κs∇Ts + α(Ts − Tf )− ef

g=G∑
g=1

Σfgφg = 0



PRONGHORN: Initial Equation Set (2 of 2)

Neutronics Model (Multigroup diffusion)

−∇ · Dg∇φg + Σagφg − χg

g=G∑
g′=1

νΣfg′φ′g −
g′=G∑

g′=1,g′ 6=g

Σg′→g
s φg′ = 0

D Σa Σf Σs are generally function of density and temperature
(leads to nonlinear equations)



SANA Test

A series of thermal experiments were conducted at SANA test facility.

Installed electrical power 50kW

Diameter of the pebble bed 1.5m

Height of the pebble bed 1.0m

Complete height 3.2m

Pebble diameter 60mm

Numerical Tests (cont.)Numerical Tests (cont.)



Initial result SANA Test

Fluid Temperature Solid Temperature



Initial result SANA Test, cont.

Fluid Momentum



PRONGHORN: CPU effort and near term plan

Rough computational cost
total DOF ≈ 90000 (6 DOFs/node)

CPU time ≈ 5min (on workstation with 4 procs)

Initial validation of steady-state thermal solver with SANA
experiment, Jan 2009
Coupled thermal-neutronics simulation PBMR 400 benchmark,
March 2009
Couple to INL nodal neutronics model, March 2009
3-D multiphysics transient simulation in parallel, May 2009 ( 9
months into project)



Conclusions

Multiphysics simulation is the next frontier in computational
nuclear engineering
Current algorithms leave open the question of accuracy and
stability.
Jacobian-Free Newton-Krylov (JFNK) methods and
physics-based preconditioning provide a modern option.
Multiphysics Object-Oriented Software Environment, MOOSE, is
allowing for rapid, 3-D, parallel, multiphysics application tool
development


