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Topics of discussion

 Need for uncertainty analysis
 An example of a complex system with uncertain inputs 
 Limited applicability of linear model, random sampling
 Applicability of stochastic finite element (SFEM) approach

 Improvement of SFEM performance through the use of goal-oriented 
polynomial basis, goal-oriented collocation procedure
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Uncertainty calculations in high dimensional systems

 How to approximate the stochastic distribution of functions over very large 
uncertain spaces?

 F could be a coupled system of several differential equations, describing a 
complex engineering structure, p the physical parameters

    (p~10,100, 1000... ).
 G could be an observation on performance of the model (maximal 

temperature), or a characteristic function which computes the probability 
for the observed quantity to be in the prescribed range (chance of 
overheating).
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Uncertainty calculations in high dimensional systems

 Computing the correct average is strongly related to approximating the 
function G.

 Available solutions:
- Random sampling (directly evaluate G for a sample from parameter space)
  Global, but slow.

- Sensitivity analysis (approximate G by a linear function, using derivative 
information)

Fast, but local, hard to adjust. What if the precision is insufficient?

 Can we create a method that efficiently uses the advantages of both 
approaches? We think so: using adapted stochastic finite element method 
fitted with derivative information. 
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Stochastic Finite Element Method, preview

 A stochastic finite element model model is an explicit approximation           
                               in basis            , dependent on direct (or derived) 
uncertain parameters {α}.

 Stochastic Finite Element Method (SFEM): 
- Choose a set  of multi-variable orthogonal polynomials Ψ. Use some 

subset {Ψq} to approximate the output function:

- The coefficients P in the definition of each polynomial are chosen to 
satisfy the orthogonality condition in some measure π:

- The coefficients xq are found by solving the collocation equation
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Distribution and transport of heat in the reactor core

 There are two aspects of heat exchange in the reactor core:                   
thermal hydraulics, and neutron interaction.

 Basic element of thermo-hydraulic model is a cylindrical pin surrounded by 
flowing coolant. Reactor core contains a hexagonal assembly of pins. 

 Finite volumes description of temperature distribution includes:
- a partition of the core into horizontal layers of volume elements; 
- a heat flux equilibrium equation producing temperature T  in each element;
- temperature dependencies of the material properties R of each element. 
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Distribution and transport of heat in the reactor core

 The parameters\material properties R of the model include heat capacity 
cp, heat conductivity K for the coolant and fuel; convective heat transfer 
coefficient h. 

 A fixed-point iteration procedure R:=R(T) , T:=T(R) is used to couple the 
dependence of the temperature distribution on the material parameters, 
and the dependence of the material parameters on temperature.

 Uncertainty in the performance J(T) of the nuclear reactor is attributed to 
the uncertainty in the values of parameters R. 

 Note: the available temperature-dependencies are built as a best fit to 
experimental data. Statistical information about the uncertainty may be 
unavailable.

2274 6.2992104541.410470.86582.1 −−− −⋅+⋅−≈ TTTc p
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 estimated at  0.1% at 300 K, 3% at 1000 K, 8% at 2000 K. 
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Distribution and transport of heat in the reactor core

 Choose a single output J(T) to characterize the performance of the model. 
For example: maximal temperature of the core.

 Evaluation of the model:
- For current values of thermodynamical parameters, compute thermal 

fluxes F over all types of interfaces (pin-pin, pin-coolant, coolant-coolant, 
coolant-outflow). Temperature gradient is estimated by a finite difference, 
all fluxes are linear in T.

- For a given nuclear reaction source term    ,                                  
assemble the conservation law                                                                    
into the form                        .

- Repeat the iterations R:=R(T) , T:=T(R) until                             
convergence of the output.

∑ ∫
Ω∂ Ω

′′′−= dVqF0
q ′′′

∑ ′′′=Λ dVqT
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Distribution and transport of heat in the reactor core

qTucTK p ′′′+∇−∇⋅− ∇= ρ0

 When discretized we obtain 
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Distribution and transport of heat in the reactor core



11

Approximating the output of the model

 Assume a temperature-dependent structure for the uncertainty:

 

in the Chebyshev polynomial basis

 With no oscillations in uncertainty, use 2nd order expansion, resulting in 3 
uncertainty parameters per thermo-dynamical property.

 Note: other structures are 
less suitable for expressing 
the uncertainty conditions.
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Approximating the output of the model

 Find the validity region for the uncertainty coefficients {α} by random 
sampling. Start with a large uniform sample of values, reject the points 
that violate the uncertainty condition

 In the multiplicative uncertainty model, 

 Check the uncertainty condition 
    at selected values of T, or of Pe
    to obtain the uncertainty validity 
    region.
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Stochastic Finite Element Method

 Stochastic Finite Element Method (SFEM): 
- Choose a set  of multi-variable orthogonal polynomials Ψ. Use some 

subset {Ψq} to approximate the output function:

- The coefficients P in the definition of each polynomial are chosen to 
satisfy the orthogonality condition in some measure π:

- For Gaussian probability measure, 
    the basis is a set of Hermite polynomials:

- The coefficients xq are 
    found by collocation.
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SFEM: Derivative-based Regression

 Collocation procedure: evaluate the basis polynomials at the sample 
points in the parameter space, run full model to compute the outputs S at 
the sample points, assemble the collocation system Ψx=S:

 Issue: we would like to use high-order polynomials. The number of sample 
points required to assemble Ψ grows rapidly.

 Suggestions: 
- For each sample point, include derivative information.
- Use an incomplete basis.
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SFEM: Derivative-based Regression

 Collocation with derivative information:

 Only right-hand side requires direct evaluations of the model.
 It is possible to evaluate the derivative efficiently, and get 
    blocks of additional information for not even an extra model
    evaluation cost!
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Approximating the output of the model

 SFEM setup choices:
- “Full” basis vs. “truncated” basis.
- “Tall” Ψ with over-sampling vs. “square” matrix Ψ with a minimal number 

of sample points

 Goal-oriented basis: polynomials of high degree are only included for 
“important” variables. Importance is defined as sensitivity of the output 
function to a particular parameter.

 Goal-oriented sample set: mostly an open question. Sample points may 
be chosen: in the directions of highest sensitivity of the output function; for 
the best condition of Ψ;  for optimal approximation error; for the best 
condition of Λ.
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Approximating the output of the model

 For a moderate number of parameters (3-15), a good choice is “tall” 
matrix, “truncated” basis.

 Possible definitions of “importance” of a parameter r(i) :
- Derivative (at some “typical” temperature distribution):
- Derivative adjusted by parameter variance: 

 We start with a full basis of order 3, separate the variables, by 
“importance”, into groups I, II and III of sizes nI > nII >> nIII.  We allow 
polynomials that include variables from group III to have degree 3; allow 
the polynomials that include variables from group II have degree 2; only 
keep polynomials of degree 1 in the variables from group I. 
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Performance of SFEM model

 Size of the finite volume model: 7 pins, 20 horizontal layers. 

 The output function is an estimation of maximal temperature in the 
centerline of the reactor core (evaluation may require additional 
calculations).

  
 The computational budget for the reduced SFEM basis is kept 

approximately constant. We use 100 exact outputs for validation. 

 Linear approximation is defined as a tangent model                             
obtained at a “typical” temperature distribution.

 We output:    Range (lowest and highest observed outputs)
  Variance (variance of the observed outputs)
  Error variance (variance of the difference between 

surrogate and exact outputs)
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Performance of SFEM model

3 parameters: Range Variance Error variance #
Cp-coolant points
 Random 1123.11 36.86
    sampling 1144.24

 Linear 1211.31 1.58 23.19           
model 1218.62

 SFEM, 1124.10 36.54 0.0013 12
    full 1144.13

 SFEM, 1124.45 39.03 0.0015 4
    truncated 1147.66
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Performance of SFEM model

12 parameters: Range Variance Error variance #
Cp-coolant, K-fuel, K-coolant, Cp-fuel points
 Random 1132.06 39.49
    sampling 1153.95

 Linear 1130.92 1.57 25.28         
model 1135.28

 SFEM, 1133.71 40.12 0.0032 72
    full 1155.75

 SFEM, 1135.81 45.21 0.0028 9
    truncated 1155.79
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Performance of SFEM model
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Conclusion  

 We have defined a SFEM method for high-order approximation of the 
response of a multiphysics system. 

 The method uses derivatives to fit the SFEM polynomial, a first, to our 
knowledge. This results in an advantage in computational efficiency over 
a generic SFEM approach.

 For a simplified reactor core model this results in significant improvement 
in variance over the linear model. 

 The method has several challenges: optimal sampling, improvement of 
the collocation condition number, basis truncation.

 We will extend the developed approach to larger models, incorporating 
additional physical effects.
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Distribution and transport of heat in the reactor core

 Choose a single output J(T) to characterize the performance of the model. 
For example: (maximal, average) temperature of coolant.

 Evaluation of the model:
- For current values of thermodynamical parameters, compute thermal 

fluxes F over all types of interfaces (pin-pin, pin-coolant, coolant-coolant, 
coolant-outflow). Temperature gradient is estimated by a finite difference, 
all fluxes are linear in T.

- For a given nuclear reaction source term    ,                                  
assemble the conservation law                                                                    
into the form                        .

- Repeat the iterations R:=R(T) , T:=T(R) until                             
convergence of the output.

∑ ∫
Ω∂ Ω

′′′−= dVqF0
q ′′′

∑ ′′′=Λ dVqT
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Approximating the output of the model

 Assume a temperature-dependent structure for the uncertainty:

 

in the Chebyshev polynomial basis

 With no oscillations in uncertainty, use 2nd order expansion, resulting in 3 
uncertainty parameters per thermo-dynamical property.

 Note: other structures are 
less suitable for expressing 
the uncertainty conditions.
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Approximating the output of the model

 Find the validity region for the uncertainty coefficients {α} by random 
sampling. Start with a large uniform sample of values, reject the points 
that violate the uncertainty condition

 In the multiplicative uncertainty model, 

 Check the uncertainty condition at selected values of T, or of Pe.
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Approximating the output of the model

 A surrogate model is an explicit approximation                               in some 
basis         .

 Stochastic Finite Element Method (SFEM): 
- Choose a set  of multi-variable orthogonal polynomials Ψ. Use some 

subset {Ψq} to approximate the output function:

- The coefficients P in the definition of each polynomial are chosen to 
satisfy the orthogonality condition in some measure π:

- For Gaussian probability measure, 
the basis is a set of Hermite polynomials:

- The coefficients xq are found by collocation.

∑ Ψ=≈ qqxJJ )(ˆ α
)(αΨ

∑ Ψ=≈
q

qqxJJ


∑∑ ∑ ++++=Ψ ...0 kjiijkjiijiiq PPPP αααααα

∫
Ω

=ΨΨ 0πdqp qp ≠

124816)(128)(
14)(2)(1)(

)(,...),(

124)4(3)3(

2)2()1()0(

)(
21

+−=−=
−===

=Ψ ∏

αααααα
ααααα

ααα

HH
HHH

H
i

i
k i



28

Approximating the output of the model

 The dependencies                                         can be studied directly, by 
random sampling.

 The derivative       can be used for sensitivity analysis.
 
 Derivative using the adjoint method:
- Start with an algebraic form of the flux equilibrium equation:
                     with 
- Assemble a system for the adjoint variable λ:
     
- Evaluate the expression:
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Approximating the output of the model

 Consider the finite volumes equation
in the form 

 Differentiate to obtain

 We need two partial derivatives:

 We have assembled                                                                                 
the adjoint variable:
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Approximating the output of the model

 The required components of the derivatives arrays

    for the volume cells I,J and parameter components Rj, αk are defined and   
stored during the last step of the iteration Rn:=R(Tn-1) , Tn:=T(Rn).

 Finally, the derivative is expressed as:

 Note: in Matlab, computing all derivatives for a single output typically 
produces an overhead of 10-40 %.
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