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Topics of discussion

B Need for uncertainty analysis

B An example of a complex system with uncertain inputs

B |imited applicability of linear model, random sampling

B Applicability of stochastic finite element (SFEM) approach

B Improvement of SFEM performance through the use of goal-oriented
polynomial basis, goal-oriented collocation procedure




Uncertainty calculations in high dimensional systems

B How to approximate the stochastic distribution of functions over very large
uncertain spaces?

0=F(x,p):R"xR" > R" = x=x(p)
p=p(®): D(u(@))= E,[G(x(p)]="

B F could be a coupled system of several differential equations, describing a
complex engineering structure, p the physical parameters

(p~10,100, 1000... ).

B G could be an observation on performance of the model (maximal
temperature), or a characteristic function which computes the probability
for the observed quantity to be in the prescribed range (chance of
overheating).




Uncertainty calculations in high dimensional systems

B Computing the correct average is strongly related to approximating the
function G.

M Available solutions:
- Random sampling (directly evaluate G for a sample from parameter space)
Global, but slow.

- Sensitivity analysis (approximate G by a linear function, using derivative
information)

Fast, but local, hard to adjust. What if the precision is insufficient?

B Can we create a method that efficiently uses the advantages of both
approaches? We think so: using adapted stochastic finite element method
fitted with derivative information.




Stochastic Finite Element Method, preview

B A stochastic flnlte element model model is an explicit approximation

G= J(a )= 2 in basis {¥ (¢ )}, dependent on direct (or derived)
uncertain parameters {a}.

B Stochastic Finite Element Method (SFEM):

- Choose a set of multi-variable orthogonal polynomials ¥. Use some
subset {¥,} to approximate the output function: J = 2 xLP

LP—P+ZPU+ZPGG z 00

/|
- The coefficients P in the definition of each polynomial are chosen to
satisfy the orthogonality condition in some measure 17:
JLIJPLIJqdn:O p#q

Q

- The coefficients x, are found by solving the collocation equation

G )= § x¥,(0)




Distribution and transport of heat in the reactor core

B There are two aspects of heat exchange in the reactor core:
thermal hydraulics, and neutron interaction.

B Basic element of thermo-hydraulic model is a cylindrical pin surrounded by
flowing coolant. Reactor core contains a hexagonal assembly of pins.

B Finite volumes description of temperature distribution includes:

- a partition of the core into horizontal layers of volume elements;

- a heat flux equilibrium equation producing temperature T in each element;
- temperature dependencies of the material properties R of each element.
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Distribution and transport of heat in the reactor core

B The parameters\material properties R of the model include heat capacity
c,, heat conductivity K for the coolant and fuel; convective heat transfer

coefficient h.

B A fixed-point iteration procedure R:=R(T), T:=T(R) is used to couple the
dependence of the temperature distribution on the material parameters,
and the dependence of the material parameters on temperature.

B Uncertainty in the performance J(T) of the nuclear reactor is attributed to
the uncertainty in the values of parameters R.

B Note: the available temperature-dependencies are built as a best fit to
experimental data. Statistical information about the uncertainty may be
unavailable.

@, = 1.6582- 8.470010°*T + 4.454101077T? - 2992.6T*
Ac

L estimated at 0.1% at 300 K, 3% at 1000 K, 8% at 2000 K.

p

with uncertainty




Distribution and transport of heat in the reactor core

B Choose a single output J(T) to characterize the performance of the model.
For example: maximal temperature of the core.

M Evaluation of the model:

- For current values of thermodynamical parameters, compute thermal
fluxes F over all types of interfaces (pin-pin, pin-coolant, coolant-coolant,
coolant-outflow). Temperature gradient is estimated by a finite difference
all fluxes are linear in T.

- For a given nuclear reaction source term q,
assemble the conservationlaw 0= ) F - lq”’dv
into the form A T = z q"dV.

- Repeat the iterations R:=R(T) , T:=T(R) until
convergence of the output.
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Distribution and transport of heat in the reactor core
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Distribution and transport of heat in the reactor core
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Approximating the output of the model

B Assume a temperature-dependent structure for the uncertainty:

R - HZ r<'>T’HD(1+ 0 OCO(T)+a MCY(T)+ 0 PCE(T))+ ..)
05 i
h=o r<">T"HD(1+ 0 CO(Pe(T))+ o "C"(Pe(T))+ o PC® (Pe(T)))+ ...

in the &hebyshev polynomial basis COM)=1 COT)=T+1 CO(T): 2T%- 1

COT)= 4T?- 3T

B With no oscillations in uncertainty, use 2" order expansion, resulting in 3
uncertainty parameters per thermo-dynamical property.

O : . . . .
Note: other structures are R- Hz PO H+ (a ((),)C(o)(T)Jr ¢ CO(T)+ g é’)C(Z)(T))

less suitable for expressing & 0
the uncertainty conditions. R=Y (ri 4 g Oy




Approximating the output of the model

B Find the validity region for the uncertainty coefficients {a} by random
sampling. Start with a large uniform sample of values, reject the points
that violate the uncertainty condition A R/ ¢ O

RS

c, ~16582-8.470-107 T + 445411077 -29926T~

Ac
with uncertainty C—F estimated at 0.1% at 300 K, 3% at 1000 K, 8% at 2000 K.
F

B |n the multiplicative uncertainty model, AR/ - 14 ¢ Oc@ 4 4 M 4 4 2c?)
o

C=C(T),C- C(Pvg(T))

Y 1egion: ¢, oo

B Check the uncertainty condition
at selected values of T, or of Pe
to obtain the uncertainty validity
region.




Stochastic Finite Element Method

B Stochastic Finite Element Method (SFEM):

- Choose a set of multi-variable orthogonal polynomials %¥. Use some
subset {¥,} to approximate the output function: J = J - Z xqw ;
q

- The coefficients P in the definition of each polynomial are chosen to
satisfy the orthogonality condition in some measure 17:
Y, =Ryt Z Pa . + z P,.ja,.aj+z P00, +..

- For Gaussian probability measure, Iq’ N dr =0 p#q
the basis is a set of Hermite polynotials: (BTIME H H(kf)(a )
i

HO )1 HO% )20 H9(): 4 -1
HO )= 8 %120 HY(0)= 160 - 48+ 12

- The coefficients X, are

found by collocation.




SFEM: Derivative-based Regression

B Collocation procedure: evaluate the basis polynomials at the sample
points in the parameter space, run full model to compute the outputs S at
the sample points, assemble the collocation system Wx=S:

H‘P(&)H HJ(SOH
0¥ (S,)0. _0Jd(S, T
0 . =0 . 0

WSl s,

B |ssue: we would like to use high-order polynomials. The number of sample
points required to assemble ¥ grows rapidly.

B Suggestions:
- For each sample point, include derivative information.
- Use an incomplete basis.




Arg

SFEM: Derivative-based Regression

M Collocation with derivative information:

[ w(s,
o

co
Y(S,
5,

oo

(S
0

oo

B Only right-hand side requires direct evaluations of the model.
M [t is possible to evaluate the derivative efficiently, and get
blocks of additional information for not even an extra model
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Approximating the output of the model

B SFEM setup choices:
- “Full” basis vs. “truncated” basis.

- “Tall” W with over-sampling vs. “square” matrix ¥ with a minimal number
of sample points

B Goal-oriented basis: polynomials of high degree are only included for
“important” variables. Importance is defined as sensitivity of the output
function to a particular parameter.

B Goal-oriented sample set: mostly an open question. Sample points may
be chosen: in the directions of highest sensitivity of the output function; for
the best condition of W; for optimal approximation error; for the best
condition of A.




Approximating the output of the model

® For a moderate number of parameters (3-15), a good choice is “tall”
matrix, “truncated” basis.

B Possible definitions of “importance” of a parameter r :
- Derivative (at some “typical” temperature distribution): ‘a % )
- Derivative adjusted by parameter variance: ‘0 % G

gy

B We start with a full basis of order 3, separate the variables, by

“importance”, into groups |, Il and Ill of sizes n, > n, >>n . We allow

polynomials that include variables from group lll to have degree 3; allow
the polynomials that include variables from group Il have degree 2; only
keep polynomials of degree 1 in the variables from group |I.




Performance of SFEM model

B Size of the finite volume model: 7 pins, 20 horizontal layers.

B The output function is an estimation of maximal temperature in the
centerline of the reactor core (evaluation may require additional
calculations).

B The computational budget for the reduced SFEM basis is kept
approximately constant. We use 100 exact outputs for validation.

B Linear approximation is defined as a tangent model _ 1J
obtained at a “typical” temperature distribution. J=J,t z aai
I al‘

B We output: Range lowest and highest observed outputs)
Variance variance of the observed outputs)
Error variance (variance of the difference between

surrogate and exact outputs)




Performance of SFEM model

3 parameters: Range Variance Error variance #
Cp-coolant points
B Random 1123.11 36.86
sampling 1144.24
® Linear 1211.31 1.58 23.19
model 1218.62
B SFEM, 1124.10 36.54 0.0013 12
full 1144.13
® SFEM, 1124.45 39.03 0.0015 4

truncated 1147.66




Performance of SFEM model

12 parameters: Range Variance Error variance #
Cp-coolant, K-fuel, K-coolant, Cp-fuel points
B Random 1132.06 39.49
sampling 1153.95
® Linear 1130.92 1.57 25.28
model 1135.28
B SFEM, 1133.71 40.12 0.0032 72
full 1155.75
B SFEM, 1135.81 45.21 0.0028 9

truncated 1155.79




Performance of SFEM model
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Conclusion

B We have defined a SFEM method for high-order approximation of the
response of a multiphysics system.

B The method uses derivatives to fit the SFEM polynomial, a first, to our
knowledge. This results in an advantage in computational efficiency over
a generic SFEM approach.

B For a simplified reactor core model this results in significant improvement
in variance over the linear model.

B The method has several challenges: optimal sampling, improvement of
the collocation condition number, basis truncation.

B We will extend the developed approach to larger models, incorporating
additional physical effects.




Thank you for your attention.
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Distribution and transport of heat in the reactor core

B Choose a single output J(T) to characterize the performance of the model.
For example: (maximal, average) temperature of coolant.

M Evaluation of the model:

- For current values of thermodynamical parameters, compute thermal
fluxes F over all types of interfaces (pin-pin, pin-coolant, coolant-coolant,
coolant-outflow). Temperature gradient is estimated by a finite difference
all fluxes are linear in T.

- For a given nuclear reaction source term g,
assemble the conservationlaw 0= ) F - lq”’dv
into the form A T = z q"dV.

- Repeat the iterations R:=R(T) , T:=T(R) until
convergence of the output.
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Approximating the output of the model

B Assume a temperature-dependent structure for the uncertainty:

R - HZ r<'>T’HD(1+ 0 OCO(T)+a MCY(T)+ 0 PCE(T))+ ..)
05 i
h=o r<">T"HD(1+ 0 CO(Pe(T))+ o "C"(Pe(T))+ o PC® (Pe(T)))+ ...

in the &hebyshev polynomial basis COM)=1 COT)=T+1 CO(T): 2T%- 1

COT)= 4T?- 3T

B With no oscillations in uncertainty, use 2" order expansion, resulting in 3
uncertainty parameters per thermo-dynamical property.

O - . . . .
Note: other structures are R- Hz PO H+ (a ((),)C(o)(T)Jr ¢ CO(T)+ g é’)C(Z)(T))

less suitable for expressing & 0
the uncertainty conditions. R=Y (ri 4 g Oy




Approximating the output of the model

® Find the validity region for the uncertainty coefficients {a} by random
sampling. Start with a large uniform sample of values, reject the points
that violate the uncertainty condition

c, ~16582-8.470-107 T + 445411077 -29926T~

Ac

with uncertainty C—F estimated at 0.1% at 300 K, 3% at 1000 K, 8% at 2000 K.
F

B |n the multiplicative uncertainty model, AR/ - 14 ¢ Oc@ 4 4 M 4 4 2c?)
o

C:= C(T),C = C(Pe(T))

B Check the uncertainty condition at selected values of T, or of Pe.




Approximating the output of the model

B A surrogate model is an explicit approximation J = j(a ) = z x,¥,in some
basis ¥ (a ).

B Stochastic Finite Element Method (SFEM):
- Choose a set of multi-variable orthogonal polynomials %¥. Use some
subset{qJ}to approximate the output function: J= J - Z XY,
o= Pyt Z Pa . z Pa Z P, +
- The coefficients P in the deflnltlon of each polynomial are chosen to
satisfy the orthogonality condition in some measure 1r:
JLIJplqudn:O p*q
Q

V0, |'| HY%
- For Gaussian probability measure,

the basis is a set of Hermite polynomials: H“(1 )-

H% )=20 H®( )= 40%-1

1
Ho )= 8 °-120  H™ (0 )= 160 *- 481 "+ 12
- The coefficients x, are found by collocation.

‘



Approximating the output of the model

B The dependencies J(T),T(N ),A (R, T),R(T,0 ) can be studied directly, by
random sampling. :

® The derivative [ ,Jecan be used for sensitivity analysis.

B Derivative using the adjoint method:

- Start with an algebraic form of the flux equilibrium equation:
F(T,0 )= 0 with F=A(a )T - z q'dv

- Assemble a system for the adjoint variable A: o T
D:=0.F, D'}:1.J T

- Evaluate the expression: .

¥
D J _ A TD 0 e
- - l ;.\k\
a a 400 -
450
s00 L L L
] 100 200 300




Approximating the output of the model

B Consider the finite volumes equation
in the form F(T (a ),R(T._,,0 ))=0

B Differentiate to obtain
dF N OFDOR DdTn_1 s dF DOR _

(aT,, R OT,,,) da iR da
® \We need two partial derivatives: 06 7’f = A
0F _ JA T
IR 0R
B \We have assembled y
the adjoint variable:
e adjoint variable dTn:_ 0F+0FD0R D()FDB:‘ATDEDM
da o7, dR 0T, IR da IR da




Approximating the output of the model

B The required components of the derivatives arrays
dA OR(”J),- OR‘”,- OR"’J),-
aR(I’J)j ’ 0ak ’ aak , aT(I)

for the volume cells /,J and parameter components Rj, a,are defined and
stored during the last step of the iteration R :=R(T__), T :=T(R ).

B Finally, the derivative is expressed as: aJ = 0J DdTn
da 0T, da
-1
o - 0 Fah a/\DTn- DaR DOADTn- DaR To=T T, =T
doe 0T IR 0T IR ag T T

B Note: in Matlab, computing all derivatives for a single output typically
produces an overhead of 10-40 %.




