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Topics of discussion

 Need for uncertainty analysis
 An example of a complex system with uncertain inputs 
 Limited applicability of linear model, random sampling
 Applicability of stochastic finite element (SFEM) approach

 Improvement of SFEM performance through the use of goal-oriented 
polynomial basis, goal-oriented collocation procedure
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Uncertainty calculations in high dimensional systems

 How to approximate the stochastic distribution of functions over very large 
uncertain spaces?

 F could be a coupled system of several differential equations, describing a 
complex engineering structure, p the physical parameters

    (p~10,100, 1000... ).
 G could be an observation on performance of the model (maximal 

temperature), or a characteristic function which computes the probability 
for the observed quantity to be in the prescribed range (chance of 
overheating).
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Uncertainty calculations in high dimensional systems

 Computing the correct average is strongly related to approximating the 
function G.

 Available solutions:
- Random sampling (directly evaluate G for a sample from parameter space)
  Global, but slow.

- Sensitivity analysis (approximate G by a linear function, using derivative 
information)

Fast, but local, hard to adjust. What if the precision is insufficient?

 Can we create a method that efficiently uses the advantages of both 
approaches? We think so: using adapted stochastic finite element method 
fitted with derivative information. 
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Stochastic Finite Element Method, preview

 A stochastic finite element model model is an explicit approximation           
                               in basis            , dependent on direct (or derived) 
uncertain parameters {α}.

 Stochastic Finite Element Method (SFEM): 
- Choose a set  of multi-variable orthogonal polynomials Ψ. Use some 

subset {Ψq} to approximate the output function:

- The coefficients P in the definition of each polynomial are chosen to 
satisfy the orthogonality condition in some measure π:

- The coefficients xq are found by solving the collocation equation
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Distribution and transport of heat in the reactor core

 There are two aspects of heat exchange in the reactor core:                   
thermal hydraulics, and neutron interaction.

 Basic element of thermo-hydraulic model is a cylindrical pin surrounded by 
flowing coolant. Reactor core contains a hexagonal assembly of pins. 

 Finite volumes description of temperature distribution includes:
- a partition of the core into horizontal layers of volume elements; 
- a heat flux equilibrium equation producing temperature T  in each element;
- temperature dependencies of the material properties R of each element. 
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Distribution and transport of heat in the reactor core

 The parameters\material properties R of the model include heat capacity 
cp, heat conductivity K for the coolant and fuel; convective heat transfer 
coefficient h. 

 A fixed-point iteration procedure R:=R(T) , T:=T(R) is used to couple the 
dependence of the temperature distribution on the material parameters, 
and the dependence of the material parameters on temperature.

 Uncertainty in the performance J(T) of the nuclear reactor is attributed to 
the uncertainty in the values of parameters R. 

 Note: the available temperature-dependencies are built as a best fit to 
experimental data. Statistical information about the uncertainty may be 
unavailable.

2274 6.2992104541.410470.86582.1 −−− −⋅+⋅−≈ TTTc p
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 estimated at  0.1% at 300 K, 3% at 1000 K, 8% at 2000 K. 
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Distribution and transport of heat in the reactor core

 Choose a single output J(T) to characterize the performance of the model. 
For example: maximal temperature of the core.

 Evaluation of the model:
- For current values of thermodynamical parameters, compute thermal 

fluxes F over all types of interfaces (pin-pin, pin-coolant, coolant-coolant, 
coolant-outflow). Temperature gradient is estimated by a finite difference, 
all fluxes are linear in T.

- For a given nuclear reaction source term    ,                                  
assemble the conservation law                                                                    
into the form                        .

- Repeat the iterations R:=R(T) , T:=T(R) until                             
convergence of the output.

∑ ∫
Ω∂ Ω

′′′−= dVqF0
q ′′′

∑ ′′′=Λ dVqT
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Distribution and transport of heat in the reactor core

qTucTK p ′′′+∇−∇⋅− ∇= ρ0

 When discretized we obtain 
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Distribution and transport of heat in the reactor core
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Approximating the output of the model

 Assume a temperature-dependent structure for the uncertainty:

 

in the Chebyshev polynomial basis

 With no oscillations in uncertainty, use 2nd order expansion, resulting in 3 
uncertainty parameters per thermo-dynamical property.

 Note: other structures are 
less suitable for expressing 
the uncertainty conditions.

23)3(

2)2()1()0(

34)(
12)(1)(1)(

TTTC
TTCTTCTC

−=
−=+==

 

i

i

ii TrR ∑ += )( )()( α

( ))()()( )2()(
2

)1()(
1

)0()(
0

)( TCTCTCTrR iii

i

ii ααα +++




= ∑

 

...))))(())(())((1(

...)))()()(1(

)2()2()1()1()0()0()(

)2()2()1()1()0()0()(

++++⋅




=

++++⋅




=

∑

∑

TPeCTPeCTPeCTrh

TCTCTCTrR

i

i

i

i

i

i

ααα

ααα



12

Approximating the output of the model

 Find the validity region for the uncertainty coefficients {α} by random 
sampling. Start with a large uniform sample of values, reject the points 
that violate the uncertainty condition

 In the multiplicative uncertainty model, 

 Check the uncertainty condition 
    at selected values of T, or of Pe
    to obtain the uncertainty validity 
    region.
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Stochastic Finite Element Method

 Stochastic Finite Element Method (SFEM): 
- Choose a set  of multi-variable orthogonal polynomials Ψ. Use some 

subset {Ψq} to approximate the output function:

- The coefficients P in the definition of each polynomial are chosen to 
satisfy the orthogonality condition in some measure π:

- For Gaussian probability measure, 
    the basis is a set of Hermite polynomials:

- The coefficients xq are 
    found by collocation.
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SFEM: Derivative-based Regression

 Collocation procedure: evaluate the basis polynomials at the sample 
points in the parameter space, run full model to compute the outputs S at 
the sample points, assemble the collocation system Ψx=S:

 Issue: we would like to use high-order polynomials. The number of sample 
points required to assemble Ψ grows rapidly.

 Suggestions: 
- For each sample point, include derivative information.
- Use an incomplete basis.
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SFEM: Derivative-based Regression

 Collocation with derivative information:

 Only right-hand side requires direct evaluations of the model.
 It is possible to evaluate the derivative efficiently, and get 
    blocks of additional information for not even an extra model
    evaluation cost!
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Approximating the output of the model

 SFEM setup choices:
- “Full” basis vs. “truncated” basis.
- “Tall” Ψ with over-sampling vs. “square” matrix Ψ with a minimal number 

of sample points

 Goal-oriented basis: polynomials of high degree are only included for 
“important” variables. Importance is defined as sensitivity of the output 
function to a particular parameter.

 Goal-oriented sample set: mostly an open question. Sample points may 
be chosen: in the directions of highest sensitivity of the output function; for 
the best condition of Ψ;  for optimal approximation error; for the best 
condition of Λ.
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Approximating the output of the model

 For a moderate number of parameters (3-15), a good choice is “tall” 
matrix, “truncated” basis.

 Possible definitions of “importance” of a parameter r(i) :
- Derivative (at some “typical” temperature distribution):
- Derivative adjusted by parameter variance: 

 We start with a full basis of order 3, separate the variables, by 
“importance”, into groups I, II and III of sizes nI > nII >> nIII.  We allow 
polynomials that include variables from group III to have degree 3; allow 
the polynomials that include variables from group II have degree 2; only 
keep polynomials of degree 1 in the variables from group I. 
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∂
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Performance of SFEM model

 Size of the finite volume model: 7 pins, 20 horizontal layers. 

 The output function is an estimation of maximal temperature in the 
centerline of the reactor core (evaluation may require additional 
calculations).

  
 The computational budget for the reduced SFEM basis is kept 

approximately constant. We use 100 exact outputs for validation. 

 Linear approximation is defined as a tangent model                             
obtained at a “typical” temperature distribution.

 We output:    Range (lowest and highest observed outputs)
  Variance (variance of the observed outputs)
  Error variance (variance of the difference between 

surrogate and exact outputs)
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Performance of SFEM model

3 parameters: Range Variance Error variance #
Cp-coolant points
 Random 1123.11 36.86
    sampling 1144.24

 Linear 1211.31 1.58 23.19           
model 1218.62

 SFEM, 1124.10 36.54 0.0013 12
    full 1144.13

 SFEM, 1124.45 39.03 0.0015 4
    truncated 1147.66
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Performance of SFEM model

12 parameters: Range Variance Error variance #
Cp-coolant, K-fuel, K-coolant, Cp-fuel points
 Random 1132.06 39.49
    sampling 1153.95

 Linear 1130.92 1.57 25.28         
model 1135.28

 SFEM, 1133.71 40.12 0.0032 72
    full 1155.75

 SFEM, 1135.81 45.21 0.0028 9
    truncated 1155.79
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Performance of SFEM model
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Conclusion  

 We have defined a SFEM method for high-order approximation of the 
response of a multiphysics system. 

 The method uses derivatives to fit the SFEM polynomial, a first, to our 
knowledge. This results in an advantage in computational efficiency over 
a generic SFEM approach.

 For a simplified reactor core model this results in significant improvement 
in variance over the linear model. 

 The method has several challenges: optimal sampling, improvement of 
the collocation condition number, basis truncation.

 We will extend the developed approach to larger models, incorporating 
additional physical effects.



23

Thank you for your attention.

Acknowledgement of information provided to us:

 Nuclear reactor analysis (Duderstadt, Hamilton)
 Thermo-hydraulics of a reactor core (lecture by Paul Fischer)
 Stochastic finite element methods (Ghanem, Spanos)
 Material properties (Fink)



24

Distribution and transport of heat in the reactor core

 Choose a single output J(T) to characterize the performance of the model. 
For example: (maximal, average) temperature of coolant.

 Evaluation of the model:
- For current values of thermodynamical parameters, compute thermal 

fluxes F over all types of interfaces (pin-pin, pin-coolant, coolant-coolant, 
coolant-outflow). Temperature gradient is estimated by a finite difference, 
all fluxes are linear in T.

- For a given nuclear reaction source term    ,                                  
assemble the conservation law                                                                    
into the form                        .

- Repeat the iterations R:=R(T) , T:=T(R) until                             
convergence of the output.

∑ ∫
Ω∂ Ω

′′′−= dVqF0
q ′′′

∑ ′′′=Λ dVqT
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Approximating the output of the model

 Assume a temperature-dependent structure for the uncertainty:

 

in the Chebyshev polynomial basis

 With no oscillations in uncertainty, use 2nd order expansion, resulting in 3 
uncertainty parameters per thermo-dynamical property.

 Note: other structures are 
less suitable for expressing 
the uncertainty conditions.
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Approximating the output of the model

 Find the validity region for the uncertainty coefficients {α} by random 
sampling. Start with a large uniform sample of values, reject the points 
that violate the uncertainty condition

 In the multiplicative uncertainty model, 

 Check the uncertainty condition at selected values of T, or of Pe.
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Approximating the output of the model

 A surrogate model is an explicit approximation                               in some 
basis         .

 Stochastic Finite Element Method (SFEM): 
- Choose a set  of multi-variable orthogonal polynomials Ψ. Use some 

subset {Ψq} to approximate the output function:

- The coefficients P in the definition of each polynomial are chosen to 
satisfy the orthogonality condition in some measure π:

- For Gaussian probability measure, 
the basis is a set of Hermite polynomials:

- The coefficients xq are found by collocation.
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Approximating the output of the model

 The dependencies                                         can be studied directly, by 
random sampling.

 The derivative       can be used for sensitivity analysis.
 
 Derivative using the adjoint method:
- Start with an algebraic form of the flux equilibrium equation:
                     with 
- Assemble a system for the adjoint variable λ:
     
- Evaluate the expression:
 

Jα∇
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Approximating the output of the model

 Consider the finite volumes equation
in the form 

 Differentiate to obtain

 We need two partial derivatives:

 We have assembled                                                                                 
the adjoint variable:
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Approximating the output of the model

 The required components of the derivatives arrays

    for the volume cells I,J and parameter components Rj, αk are defined and   
stored during the last step of the iteration Rn:=R(Tn-1) , Tn:=T(Rn).

 Finally, the derivative is expressed as:

 Note: in Matlab, computing all derivatives for a single output typically 
produces an overhead of 10-40 %.
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