Applying Usability Engineering to the NEES Tsunami/Wave Basin

Oregon State University collaboration:
Dept. of Civil, Construction, and Environmental Engineering
Hinsdale Wave Research Lab
Northwest Alliance for Computational Science & Engineering (NACSE)

Re-Engineering the Wave Research Lab

• Extend the capacity of the physical facility
• Create an Information Architecture that
 - Enables remote access in real-time
 - Captures and preserves all relevant information
 - Facilitates re-use of knowledge gained from experiments
• Enhance effectiveness of WRL researchers through usability engineering
Adding an Information Architecture

Wave Research Lab
Data acquisition
Audio/video capture
Temporary caching

Campus Router

Internet2 Cloud

NACSE
Data filtering and conversions
Archive: Tsunami Experiment Database
Web-based access to audio/video
Web-based access to Experiment Database
Remote access toolkits

At the WRL

Wave generator control node

Network switch

Local (cache) fileserver

Sensors

Remote-operable cameras

Microphones/Hydrophones

Video workstations

NACSE – Oregon State University
Special Need for Reliability

- Experiments must be captured as they happen
 - Very expensive
 - Typically destructive in nature
- Lead researcher must have “instant feedback”
- Reliability is key part of architecture
 - Combination of redundancy, over-design, and alternative paths
 - Builds on previous experience with fully interactive, network-based video
Applying Usability Engineering

- **Human factors**
 - Characteristics, capabilities and limitations of human beings
 - How these affect our use of technology
- **Usability engineering**
 - Addresses human factors explicitly during design process
 - To improve system effectiveness and safety
 - To improve user productivity

Why Is Usability Engineering Important?

A system that doesn’t
- Respond to user needs
- Align with user processes
- Accommodate user expertise

... may be worse than no system at all!

Mozart writing the digital version of his symphony No. 38 in D major
Usability Engineering and NEES

• UE can make it possible for researchers to
 - Control and observe experiments from remote sites
 • Reduce requirement for on-site presence
 - Gain more from experimental processes
 • Exploit technology to enhance human observation
 - Share experiments with colleagues and students
 • Broaden participation in experiments
 • Extend useful lifetime of experimental processes
 - Exploit corpus of experimental results
 • Facilitate re-use of previous experimentation
 • Support integration of computational and experimental modeling

Telepresence: The Raw Ingredients

• Sensor data: raw, filtered, graphical summaries
 - 10s to 100s of devices operating concurrently
• Data streams from remotely operable cameras and microphones
 - 10s of devices at eye level, suspended from roof, and underwater
• Robotic controls
• Use of computation to merge/analyze real-time data streams
Without attention to usability

Usability essentials:
- Seamless synchronization of data streams
- “Intelligent” choice of what to display
- No requirement for user to download software
- Experience at one NEES site “pays off” at others

Engineering the User Experience

• Role 1: Steering and observing the remote experiment
 • Researcher(s) sets up and directs experiment in near-real-time
 • Colleagues from same/other institutions participate
 • Observe/assimilate/discuss varying sets of data streams

• Role 2: After-the-fact experiment replay
 • Researcher(s) observe experiment in simulated time
 • Identify subsets of data streams for targeted uses
Issues in Remote Steering/Observation

Goal: Make remote experimentation efficient and useful

- Helping PIs select optimal control settings
- Acquiring metadata only the PI can furnish
- Placing audio/video effectively
- Integrating sensor data into meaningful summaries
- “Intelligent” management of displays
- “Instant Replay” to improve on traditional viewing
- Electronic Lab Notebook: saving/annotating records for personal use

NACSE - Oregon State University

Issues in Experiment Replay

Goal: Make it possible to derive real benefit from others’ experiments

- Generating markers for “interesting events” in sensor and audio/video streams
- Zooming forward through simulated time to next event, then slow-stepping through critical data sequences
- Synchronized access to raw/filtered/summarized data
- Ability to download arbitrary sequences of data

NACSE - Oregon State University
Usability engineering means working with users to identify their needs and preferences.

Data Exploration: The Raw Ingredients

- Extremely large quantities of data must be archived and made publicly available
- Synchronization markers must be added
- Diverse data formats need to be integrated
- Metadata need to be standardized
- Must be possible to compare experimental data with data from simulations
Engineering the User Experience

- Tsunami Experiment Databank archives all aspects of NEES experiments
- Role 3: Single or collaborative researchers use search-and-exploration interfaces
 - So duplication can be eliminated
 - So models can be calibrated
 - So model results can be validated

Issues in Databank Exploration

Goal: Make searching flexible enough to quickly locate appropriate experiments

- Generating most metadata automatically during data acquisition/processing
- Multi-tiered interfaces that support typical user scenarios:
 - “Experiments involving certain wave configurations”
 - “Experiments involving certain types of models”
 - “Experiments yielding particular types of results”
 - “Find experiments similar to this one”
Key Issues for Tsunami Community

- Metadata will be essential
 - Who defines it?
 - Must be community-based
 - Recommend that task force(s) be convened
 - Most should be generated automatically during experiments
 - Some must be defined by PI - need to make this easy
 - "Incentive" approach to obtaining metadata from NEES researchers
 - Require it before experiment can start
 - Carrot: “automatic experiment report” generation
Key Issues for Tsunami Community

• Data formats
 - Known formats needed for raw and first-order processed (filtered) data
 - Format standards?

• “Publishing” experimental data
 - Site will retain raw and first-order data
 - Quick-look (low resolution) data
 - Can’t lead to publication - made available immediately
 - High-resolution data needed for publications
 - Made available after PIs have a chance to publish
 - PIs encouraged to deposit other processed data

NACSE - Oregon State University