The Web May Be Great – But Can We Make It Usable?

Cherri M. Pancake
Oregon State University
http://www.cs.orst.edu/~pancake

Preamble: Who “We” Are

- Regional high-speed network
- vBNS access point
- Cutting-edge research in network technology
Preamble: Who “We” Are

- “Metacenter Regional Alliance” (NSF)
- Cutting-edge research in advanced Web technology
- Testing facility for usability, desktop interoperability

Academic Partnerships

- Enabling technology for Web interfaces to remote research databases
- Transparent linking of heterogeneous databases
Federal HPCC Programs

- Usability engineering for HPC system software and tools
- Web-based access to resources, methods, and collaborators

Industrial Partnerships

- Mediation between HPC manufacturers and their user communities
- In-depth studies of how technical programmers use HPC machines
Is the Web Usable?

- Traditional measures of usability
 - ease-of-learning
 - ease-of-use
 - productivity
 - satisfaction

- How the Web measures up for professional use
 - ease-of-learning: Excellent (anyone can learn, fast)
 - ease-of-use: Good (some users confuse themselves)
 - productivity: Poor (only a few things are accomplished faster)
 - satisfaction: Weak (user gets lost, tires of flashy graphics)

Is the Web Just an “Online Library”?

- Basic document elements are varied
 - Text
 - Images
 - Video clips
 - Audio

- Interaction is simplistic
 - Play video/audio clip
 - Link to another location

- Interaction limited to “serve me some more info”
Is the Web Just an “Online Library”? (cont.)

- Frames and forms create alternatives for navigation
 - Table-of-contents provide shortcuts
 - Glossaries or added frames allow comparison
 - Forms make search mechanisms more flexible

Information flow is still “one-way”

We Don’t Know What Makes Documents Effective

- How do we know Web documents are being used, not just accessed?
- How do we know they're being used effectively, not simply scanned?
- Interactive HTML provides mechanism for collecting usage statistics
 - How long each part of page is viewed
 - Which hyperlinks are pressed
 - How many times the page is printed
Exploiting the Web to Improve Usability

- Why doesn’t the Web make us more productive?

 What are we doing wrong? (What aren’t we doing right?)

- Our research focus – *Develop enabling technology so the Web can improve productivity in terms of:*
 - Human efficiency (how quickly and easily results are achieved)
 - Human effectiveness (how well results can be applied to real tasks)

- How can the Web make us more efficient?
 - Mask system idiosyncrasies
 - Reduce level of physical / cognitive effort
 - Minimize opportunities for error

- How can the Web make us more effective?
 - Make learning more engaging
 - Adjust to different levels of user expertise

Using the Web to Mask Idiosyncrasies

- Compiling applications across multiple platforms is not easy
 - difficult to remember variations in compiler options
 - frustrating to determine if and where libraries are installed
 - tedious to find and transfer files across file systems
Using the Web to Mask Idiosyncrasies (cont.)

- Equations currently written / printed via idiosyncratic formats
 - Can’t be converted easily
 - Can’t be edited without the original software
 - Only LaTeX can be auralized
 - Must be converted to image file for Web use
- WebEqEd
 - Dynamically constructs image
 - Editable using browser
 - Printable
 - Convertible to LaTeX, audio formats

Using the Web to Mask Idiosyncrasies (cont.)

- User interacts at a familiar level
 - Option meanings, not site-specific syntax
 - Library functionality, not site-specific location
 - Which tool to use, not how to invoke the tool
- User doesn’t need to track changes
- Error protection
 - Typing is minimized
 - Error-detection-as-you-go
 - History mechanisms minimize user effort
Making Learning More Engaging

- New interactive mechanisms allow user to try-as-you-go
- **WebTerm**
 - Terminal within a browser window
 - Allows direct interaction with remote computers
 - Interoperable with hot buttons in document

Reducing Level of Physical / Cognitive Effort

- Traditional access to remote databases required use of Structured Query Language (SQL)

```sql
SELECT  Taxa.genus, Taxa.species, Taxa.authority, 
        Taxa.subtaxtype, Taxa.subtaxname, 
        Taxa.subtaxauth, Taxa.taxanum, 
        mgd_1..Link_phrases.phrase 
FROM     Taxa, mgd_1..Link_phrases 
WHERE    upper(germs..Taxa.isidia ) like upper('no') 
        AND upper(germs..Taxa.perithecia) like upper('yes') 
        AND upper(germs..Taxa.lifeform) like upper('under substrate surface') 
        AND upper(germs..Taxa.uppercolorlobe) like upper('grayish-green') 
        AND upper(germs..Taxa.surfacetexture) like upper('smooth') 
        AND upper(germs..Taxa.algae) like upper('green') 
        AND upper(germs..Taxa.sporetype) like upper('septate') 
        AND upper(germs..Taxa.areasolate) like upper('cracked surface on substrate') 
        AND mgd_1..Link_phrases.phrase_abbrev = "detpic" 
ORDER BY Taxa.genus
```
Reducing Physical / Cognitive Effort (cont)

- Web forms eliminate need for SQL
- Most forms require that user know how database is organized
- HyperSQL
 - Based on “recognition” rather than “recall”
 - Adds menus, lists, button bar elements
 - Can limit number of query responses
 - Developed for and with scientists

Adjusting to Different User Levels

- Lichen Synoptic Key
 - Interface for professional biologists
 - Eliminates all typing
 - Interface built with HyperSQL
 - Reflects database updates immediately
 - Improves on traditional dichotomous key
 - Frees user from rigid process
 - Accommodates uncertainty
Adjusting to Different User Levels (cont.)

- **LichenLand**
 - Second “personality” for same database
 - Allows beginners to explore and learn
 - Select by picture or scientific term
 - Point-and-click access to explanatory info
 - Eliminates possibility of error
 - Shows that almost anyone can “key out” a lichen

Minimizing Opportunities for Error

- **QueryDesigner**
 - Builds on user experiences with HyperSQL
 - Provides point-and-click graphical tool for constructing HyperSQL interfaces
 - Makes forms creation as error-free as queries are
 - Runs within a browser window
Minimizing Opportunities for Error (cont)

- QueryDesigner “analyzes” remote database
 - Identifies DB organization
 - Constructs diagram (editable)
 - Determines which records are linked to which others
 - Displays “meta-information” provided by DB owner

Challenges Ahead

- The Web is a moving target
 - Rapid evolution of server / browser support
 - Document providers assume that all browsers are similar
 - “Unsuspected” inconsistencies mean user doesn't see what developer thinks!
- Web technology assumes that the user has a question to pose
 - Users may have no particular question in mind
 - Users may be posing the “wrong” questions
- How can we make it possible to explore unfamiliar information?
 - Make data accessible for unanticipated uses
 - Expose data richness and interrelationships
Interrelating Information from Different Sources

- Oregon Coalition for Interdisciplinary Databases
 - Project will link research databases from many disciplines:
 - forestry
 - geosciences
 - ecology
 - botany
 - plant pathology
 - entomology
 - wildlife management
 - fisheries
 - microbiology
 - government and census data
 - Navigation via dynamic point-and-click maps

Facilitating Use of Immense “Data Mines”

- New project with Naval Oceanographic Laboratory to open Ocean Floor Survey data
 - Data were previously classified
 - Ocean floor topography, temperatures, currents, etc.
- Too large-scale for interactive browsing
 - Data cover entire globe
 - Almost 50 years of continuous data tracking
 - Will soon reach a petabyte in size
- HyperSQL will help user navigate meta-data, rather than the data themselves
 - Learn what data are available for specific needs
 - Estimate data size (and time required to download)
 - Play “what if” to find reasonable bounds on area, time, resolution
 - Corresponding data then downloaded via simple operation
Conclusions

- Usability engineering can be applied effectively to Web technology
 - Let users set the priorities
 - Accommodate user habits and preferences
 - Focus on improving productivity and satisfaction

- Must involve users when developing new technology
 - New disciplines bring new perspectives as well as new types of problems
 - Many of our best ideas came from motivated users!

- Results of collaborations with users are innovative and exciting