

6 DoF Pose Estimation for Wide baseline Stereo Camera

Jay Patravali, Dr. Stephen Nuske | Carnegie Mellon University

MOTIVATION AND OBJECTIVE

- We use robots for automated visual yield mapping.
- Current system utilizes an expensive GPS to geotag raw stereo images. Accuracy is
- Overlaps between consecutive frames can lead to lead to inaccurate output yield estimates or over counting.

within a meter range.

IM

- Develop a new visual odometry pipeline to robustly estimate the 6 DoF camera pose for a wide baseline stereo camera that logs high resolution images at low frame rates.
- Improve the accuracy of yield estimates by establishing a pose relation between individual image frames

DATASET COLLECTION AND HARDWARE SETUP

Hardware: Pointgrey Flea3 Stereo Camera | Trimble GPS

• Sorghum Fields, SC

• Grape Vineyards, CA

$$J_f = \sum_{k=0}^{K} \frac{1 - C(D_k)}{C_{MAX}}$$

Image Pair	Statistic	RANSAC	Lo RANSAC	BEEM	UniSAC
Vineyard Data	Correspondences	301	301	301	301
	Inliers	20	25	34	31
	Time (s)	0.124	0.68	0.61	.51
Office	Correspondences	306	306	306	306
	Inliers	56	78	86	93
	Time (s)	0.129	0.61	0.83	0.82

