
Rebecca A. Hutchinson and Thomas G. Dietterich
School of EECS, Oregon State University

rah@eecs.oregonstate.edu and tgd@eecs.oregonstate.edu

Combining Boosted Regression Trees and Hierarchical Species Occupancy Models

Abstract
We describe an extension to a standard model for the relationship between

the occupancy pattern of a species on a landscape and imperfect

observations of its presence or absence. The structure in the observation

process is incorporated through a probabilistic model, and environmental

inputs are incorporated using flexible tree-based methods. Our experiments

on synthetic data compare the performance of the model with tree-based

methods to the conventional parameterization which assumes a linear

model for the covariates. Our results suggest that tree-based methods are

helpful when the true relationship between the environmental inputs and

the species occupancy does not fit the linear model.

Introduction
Goal: Predict the presence/absence Zi of a bird species as a function of

habitat features Xi at site i.

Problem #1: The training data does not observe Zi directly. When an

observer visits site i at time t, there is a detection probability dit that

depends on additional detection features Wit. The probability that the

observer will report seeing the bird Yit is dit if Zi = 1 (the bird is present)

and 0 if Zi = 0 (the bird is absent).

Solution #1: Fit a model of the form shown in Figure 1, that explicitly

models separate contributions of the detection process (d) and the

occupancy process (o). This model assumes that the true, latent

occupancy Z is constant across the visits (t = 1,…,T). This method has

been developed in the ecology literature (e.g. [5]), where the standard

methodology is to fit several models with different sets of covariates and

choose one model according to a model selection criterion (e.g., AIC).

Problem #2: The sets of covariates X and W may be large, and we may

not know which covariates are relevant and/or the correct model for their

relationship to o and d.

Solution #2: Model the o(X) and d(W) using tree-based methods that can

accommodate large numbers of covariates, interactions between

covariates, and missing values in the covariates. One example of a tree-

based method is boosted regression trees (BRTs, [4]), which have been

successfully applied in ecology ([2]), but never as part of a model that

accommodates uncertain detection.

Methods: Combine solutions 1 and 2 above. Learn tree-based models for

occupancy and detection using functional gradient ascent ([3]).

Model and Algorithms

Figure 1: The graphical structure of the species occupancy model. The outer plate is repeated for each 

site i, and the inner plate is repeated for each visit t.  Y is the observed presence or absence of the 

species, Z is the latent occupancy of the species, W contains detection covariates, and X contains 

occupancy covariates. Shaded nodes are observed; unshaded nodes are unobserved. Square

nodes are binary; round nodes are continuous.
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Experiments

In the log-likelihood function l, I(x) returns 1 if and only if x is true.  and are the parameters of the 

tree methods (the split points and leaf values).   

In functional gradient ascent, we train a tree at each stage to predict the following values:

In the last line, we let the product of 0 and −∞ be 0, so that the last term does not contribute to the

likelihood if Yit is 0 and causes the likelihood to be −∞ if Yit is 1. This is consistent with the

assumption that if the site is truly unoccupied, the species will never be observed (i.e., no false

positive observations), which is reasonable for expert observers.

The EM algorithm iterates between computing P(Z|Y,X,W; , ) via Bayes rule in the E-step and using

functional gradient ascent to update the trees in the M-step, based on derivatives of Q (not shown).

Synthetic Data:

• 750 sites (M=250), each visited twice (T=2). 250 for training; 250 for validation, 250 for testing.

• 2 occupancy features and 2 detection features drawn from a standard normal distribution.

• Zi and Yit values sampled according to the generative model in Figure 1.  The true values of Z were 

saved for evaluation purposes, even though Z is not available in real data. 

Algorithms:

• LR has linear functions for o and d, trained on objective function l.

• LR+EM has linear functions for o and d, trained on objective function Q.

• BRT has tree ensembles for o and d, trained on objective function l.

• BRT+EM has tree ensembles for o and d, trained on objective function Q.

The validation set was used to select the regularization scheme for the LR models (L1 vs. L2 and a weight

for each model component from {0,0.001, 0.01,0.1,0.5,1}). Validation set log-likelihood was also used to

select the number of stages (trees) for BRT (from [1,1000]), the depth of the trees (from {1, 2, 3, 5}), and

the shrinkage parameter (from {0.001, 0.01, 0.1}).

Evaluation:

We compare the methods based on test set log-likelihood, and the area under the ROC curve (AUC) on 2

different prediction tasks.

Conclusions:

When the LR models can represent the true function generating the data, they have a slight edge over the 

BRT models.  When the true function cannot be represented by the LR models, the BRT models perform 

better.  

Questions for future experiments to explore:

(1) In real data, we do not observe Z so we cannot validate our models on the task of interest.  How 

should we set tuning parameters and use validation data to do well at predicting Z using only the observed 

variables?

(2) How does the answer to (1) change with more covariates?  Arbitrarily complex functions for o and d?  

Irrelevant covariates?  

(3) Is there a systematic advantage/disadvantage to using EM?

YitZi

i=1,…,M

t=1,…,T

Xi Wit
o d

P( Zi | Xi ) = o( Xi ) = oi P( Yit | Wit ) = Zi d( Wit ) = dit

The tree grown at each stage is weighted, and we iterate between updating the occupancy and detection 

models.

Alternatively, we can use Expectation-Maximization ([1]) to maximize the expected joint log-

likelihood:

Occupancy:

Detection:

Method Tuning parameters

Test set log-

likelihood AUC predicting Z AUC predicting Y

True model -219 0.80 0.93

LR L2, wts (1, 0.1) -216 0.822 0.792

LR+EM L2, wts (1, 0.5) -217 0.822 0.792

BRT Depth 2, shrinkage 

0.1, 1000 stages

-227 0.802 0.769

BRT+EM Depth 2, shrinkage 

0.1, 1000 stages

-264 0.766 0.729

Method Tuning parameters

Test set log-

likelihood AUC predicting Z AUC predicting Y

True model -154 0.812 0.922

LR L1, wts (1, 1) -320 0.493 0.551

LR+EM L1, wts (1, 1) -317 0.488 0.533

BRT Depth 5, shrinkage 

0.1, 

1000 stages

-233 0.777 0.745

BRT+EM Depth 5,  shrinkage 

0.1, 15 stages

-249 0.773 0.717

Synthetic data: o and d are linear functions of the covariates.

Synthetic data: o and d are the XOR of the sign of the covariates.
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